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1 FEATURE ENGINEERING
1.0.1 Overfitting and underfitting. Neural networks are known for

their ability to fit a dataset, even when there is no underlying rela-

tionship between the features and the target - a phenomenon known

as overfitting. An extreme example is mapping our ray-traced tar-

gets to white noise textures as features. In this case, the neural

network acts as a hash-map, mapping input to the output. This

might work for a very small dataset but will obviously fail for any

larger dataset. In practice, some features provide crucial information

and some do not. Thus, to isolate noise from information, we need

a diverse dataset. In our case, we can create diversity by collecting

data across various emitter and camera positions, and scenes. In

fact, as we generate more training data, we run into the regime of

underfitting, where the network lacks enough capacity to learn the

details in the dataset.

1.0.2 Feature selection. As described in the main paper, we use sen-
sitivity as our metric to select and prune our features from the

set 𝑈 =
{
𝑑, n, 𝑧, ne, 𝑧𝑓 , 𝑐𝑒 , 𝑐𝑐

}
+
{
𝑧 − 𝑧𝑓 , 𝑧/𝑧𝑓 , 𝑐𝑐/𝑑, n · ne

}
. How-

ever, pruning based on sensitivity alone does not lead to a unique

combination of buffers. There are sever combinations with simi-

lar sensitivity. We use validation error as tie-breaking rule in such
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Table 1. Validation error for various combination of buffers. At each row,
we add 2 new features and remove features with sensitivity below 1.5%. +/−
indicates set addition and subtraction.

Before pruning After pruning

Fea.

Count

Feature

Description

Err

10
−3

Fea.

Count

Feature

Description

Err

10
−3

2

{
𝑧/𝑧𝑓 , 𝑐𝑒

}
6.86 No change

4 +
{
𝑧 − 𝑧𝑓 , 𝑐𝑐/𝑑

}
6.65 No change

6 + {n · ne, 𝑑} 6.61 4 − {n · ne, 𝑐𝑐/𝑑} 6.69

scenario. For example as shown in table 1, buffer combinations

{𝑧/𝑧𝑓 , 𝑧 − 𝑧𝑓 , 𝑐𝑒 , 𝑐𝑐/𝑑} and {𝑧/𝑧𝑓 , 𝑧 − 𝑧𝑓 , n · n, 𝑑} have similar sen-

sitivity but one has lower validation error.

2 TEMPORAL LOSS

Frame 𝑡 Frame 𝑡 − 1 Frame 𝑡 Frame 𝑡 − 1

Shadow map (SM)

A. Small camera movement B. Large camera movement

Pixel reprojection

SM lookup

Perturbation 0

Perturbation 1

C. Small SM perturbation D. Large SM perturbation

Fig. 1. Comparing the effect of motion-vector and perturbation loss on
shadowmap texture lookup. A and C indicate that a small cameramovement
in time is equivalent to a small perturbation of SM in space. Similarly, B
and D indicate that a large camera movement is same as large perturbation
of SM in space.

In this section, we compare the similarities an dissimilarities

between our perturbation loss with motion vector [7] based loss

function. A motion-vector finds a pixel’s location in the previous

frame by projecting the pixel’s world-space position on the previous

frame. A motion-vector based loss thus computes the motion-vector

compensated temporal pixel difference in the network output as

error which is then backpropagated through the network for learn-

ing. Note that a motion-vector based loss uses historical data only
during training.

We argue that our perturbation loss has similar end effect as

motion vector based loss while offering more control over temporal

stability and simplicity in data collection. In case of motion vector

loss, due to discrete nature of pixels, the reprojected pixel in the

previous frame may correspond to a slightly different world-space

location. Assuming the emitter is fixed, a small difference in world

space value of a pixel across time may result in different shadow-

map texture lookup, as shown in figure 1 (b). This is equivalent to

perturbing the emitter (our approach) while keeping the camera

position fixed as shown in (d). However, for motion-vector loss, if
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Table 2. Layer-wise compute, learnable parameters, and temporary storage
read/write access for a 5-layer network processing 1024x2048 resolution
inputs.

#

runtime(ms)/

resolution

Compute

(GFlops)

# parameters

(×103)
Temp. storage IO

(MPixels)

0

11.0ms

(1Kx2K)

7.15 3.4 278.9

1

3.67ms

(512x1K)

8.05 15.4 117.4

2

1.63ms

(256x512)

8.05 61.4 58.7

3

0.79ms

(128x256)

8.05 245.8 29.3

4

0.17ms

(64x128)

2.68 327.68 6.29

the framerate is too high, the world-space difference in pixel may

be small. The pixel and its reprojection may share the same shadow

map texel, as shown in (a). Same is true if the shadow map texels are

large. In both cases, the temporal error is zero and the network does

not learn. Conversely, if the framerate is too low, we may not find

a valid reprojection and the error must be forced to zero. As such,

a careful balance of the framerate is required for motion-vector

losses. However, in our case, we can directly adjust the emitter

perturbation such that the differences are large enough for non-

zero backpropagation as shown in figure (d). This is achieved by by

setting the perturbation magnitude proportional to the distance of

emitter from the scene and size of the emitter. Additionally, motion-

vector losses rely on long sequence of key-framed images which

adds additional complexity to data collection pipeline. Our approach

do not rely on temporal information, as such we can sample the

scene with arbitrary camera, emitter and object trajectories with

any desired framerate.

3 PERFORMANCE OPTIMIZATION
We discuss an interesting aspect of UNet architecture that we did

not discuss in the main document.

From table 2, we see that the runtime performance of our net-

work is proportional to the temporary storage, not the number of

compute operations. Notice how the compute flops are nearly con-

stant for the first 4 layers, yet the runtime drops as we go down

the layers. This indicates the performance is bounded by memory

bandwidth. Required memory bandwidth is proportional to the size

of temporary buffers and how well the buffers are cached. Caching

is most effective when the size of the temporary buffers are small.

In fact due to higher cache misses in the layer 0, we see a more than

linear growth in runtime compared to layer 1. We verified this using

a profiler. A detailed layerwise breakdow of the network runtime

(without optimization) is provided in table 2.

Further performance improvements may be possible through

pruning [3] of the network weights. Performance of our network

largely depends on the size of temporary buffers; not how the buffers

are connected. As such, simply pruning the weights may not im-

prove performance unless we also reduce the size of temporary

Table 3. Measured layer-wise compute time for a 5-layer network process-
ing 1024x2048 resolution input.

layer/

Resolution

Encoder

Op/Time(ms)

Decoder

Op/Time(ms)

Total

(ms)

0

(1Kx2K)

Conv2d + DnSamp

(4.27 + 0.72)

UpSamp + Skip + Conv2d

(0.24 + 0.37 + 5.37)

11.0

1

(512x1K)

Conv2d + DnSamp

(1.38 + 0.63)

UpSamp + Skip + Conv2d

(0.12 + 0.19 + 1.36)

3.67

2

(256x512)

Conv2d + DnSamp

(0.58 + 0.33)

UpSamp + Skip + Conv2d

(0.07 + 0.10 + 0.55)

1.63

3

(128x256)

Conv2d + DnSamp

(0.29 + 0.10)

UpSamp + Skip + Conv2d

(0.04 + 0.05 + 0.31)

0.79

4

(64x128)

Conv2d

(0.17)

0.17

storage. Another avenue for exploration is lowering the precision

of temporary storage to 8 bits as the network output is always be-

tween 0 and 1. We leave these optimizations for further exploration

as future work.

4 NETWORK DEPTH OPTIMIZATION
In this section, we first derive the mathematical formula for penum-

bra width using our simplified model as described in the main paper.

We estimate the parameters 𝜃 , and 𝜃𝛿 as follows:

𝑧𝑚 = 𝑃𝑀 =
𝑧𝑚𝑎𝑥 + 𝑧𝑚𝑖𝑛

2

(1)

𝑟𝑠 = 𝑀𝐷 =
𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

2

(2)

From △𝐴𝑀𝑃 ,

𝐴𝑀 =

√︃
𝑧2𝑚 + 𝑟2𝑒 (3)

a. Model estimating penumbra

𝑟𝑒
Emitter

Center line

𝑧𝑚𝑖𝑛
𝑧𝑚𝑎𝑥

𝑧𝑓 𝑥𝑎 < 0

𝑥𝑎 > 0

Penumbra

≈ 𝑥𝑎 + 𝑥𝑏

𝑥𝑎 𝑥𝑏

b. Estimating parameters

P A

𝑧𝑚

𝜃
𝜃𝛿

M
D

B Q𝑥𝑎 C

𝑥𝑏

Fig. 2. A simplified model to estimate the penumbra size at a given pixel.
We assume our occluder is spherical in shape, forming a convex bounding-
sphere around the occlusion geometry as shown in figure (a) on the left.
Figure (b) shows a simplified diagram to estimate the parameters 𝜃, 𝜃𝛿 .
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Fig. 3. Empirical validation of our penumbra width prediction model. We predict the penumbra width on the vertical axis and vary the number of layers on
the horizontal axis. The diagonal represents the optimal number of layers and elements below the diagonal show high error as the receptive field is not large
enough to accommodate the penumbra width.

From △𝐴𝑀𝐷 ,

𝜃𝛿 = 𝑠𝑖𝑛−1
𝑀𝐷

𝐴𝑀
= 𝑠𝑖𝑛−1

𝑟𝑠√︃
𝑧2𝑚 + 𝑟2𝑒

(4)

From △𝐴𝑀𝑃 and △𝐵𝑀𝑄 ,

𝐵𝑄 =
𝐴𝑃 ·𝑀𝑄

𝑀𝑃
=
𝑟𝑒 (𝑧𝑓 − 𝑧𝑚)

𝑧𝑚
(5)

From △𝐴𝐵𝐶 ,

𝜃 = 𝑡𝑎𝑛−1
𝐵𝑄 +𝑄𝐶

𝐴𝐶
= 𝑡𝑎𝑛−1

𝐵𝑄 + 𝑟𝑒
𝑧𝑓

(6)

Therefore,

𝑥𝑎 = 𝑧𝑓 𝑡𝑎𝑛(𝜃 − 𝜃𝛿 ) − 𝑟𝑒 (7)

𝑥𝑏 = 𝑧𝑓 𝑡𝑎𝑛(𝜃 + 𝜃𝛿 ) − 𝑟𝑒 . (8)

4.1 Empirical verification

Table 4. Table showing the compute cost and the number of learnable
parameters for 3,5,and 7 layer network in figure 3.

Network Flops per pixel # learnable parameters

3-layer 8528 39.25K

5-layer 16208 653.7K

7-layer 21968 9.501M

In figure 3, we move a mesh object between a ground plane and

an emitter producing penumbra of varying size. For each row in the

figure, we predict the distribution of penumbra size and find the

maximum (95th percentile) width from the distribution. Across the

columns, we vary the receptive field of the network by adjusting the

number of layers. Collecting the errors across all combinations, we

notice that the elements below the diagonal have high error as the

receptive field of the network is not large enough to accommodate

the penumbra size. Note that in figure 3, networks do not have the

same compute flops per pixel as shown in table 4.

Simply increasing the number of layers in a network also in-

creases the compute cost. As such, any reduction in error might be

attributed to the increased compute requirement. We verify that the

reduced error is indeed due to increased receptive field of the net-

work and not necessarily due to the increased computation. As such,

we constrain the network flops across the 3, 5, and 7 layer network

as shown in table 5. From figure 4, we see that the error reduces

Table 5. Table showing the compute cost and the number of learnable
parameters for 3,5,and 7 layer network shown in figure 4.

Network Flops per pixel # learnable parameters

3-layer 14928 110.9K

5-layer 16208 653.7K

7-layer 15328 1.626M
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Fig. 4. Empirical validation of our penumbra width prediction model. We predict the penumbra width on the vertical axis and vary the number of layers on
the horizontal axis while keeping the compute flops constant across networks. The flops constrained networks show similar behavior as the unconstrained
networks in figure 3.
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Fig. 5. Figure showing the accuracy of our penumbra width prediction model on Sponza. Region with high penumbra width (blue cutout), as predicted by our
model is reproduced accurately only by the 7-layer network.

along the diagonal despite using networks that are computationally

equal (almost).

In figure 5, we take a single frame from the Sponza scene and

analyze the validity of our penumbra width prediction across differ-

ent regions in the frame. The increasing accuracy of our network

output with the number of layers in a region with large penumbra

(yellow cutout) is a strong validation in support of our model.

5 DATA GENERATION, TRAINING AND INFERENCE
Orchestrating scene authoring, data collection, training, inference,

and generating the final results is one of the key challenges to
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Fig. 6. Demonstration of the effectiveness of our technique on untrained objects marked in red in the first row. Second row shows the comparison w.r.t
reference with error superimposed over raw network output. Going from left to right, hard-shadow is indexed with 0 while 3 indicates an emitter of diameter
50cm. Shading is applied post-process in the first row.

this project. We author the scenes using Blender [2], ensuring all

keyframed camera trajectories do not go outside the emitter frus-

tum. We keyframe several camera and emitter trajectories covering

different scenarios and bake them into the scenes. We then upload

the scenes to a Linux cluster to generate our training data. A modi-

fied version Falcor [4] based on Vulkan (originally DX12) is used

along with Python scripts to collect, process and organize the data

for training. We use Pytorch [6] scripts for training which scans

through the data in a random order every epoch. While training,

we save N (= 3) best models based on a test error. The test consist

of a small number (10-15) of handpicked images. We run the test

with a probability of 0.01 at each training iteration. Thus the test

is run roughly every 100 training iterations. Once the training is

complete, we select the best model out of N by comparing the error

on full training dataset. We also collect several statistics during the

training for analysis. During inference, we run our model through

new trajectories which may have some overlap with training dataset

but are not same. We test the performance of our network on a local

machine (AMD 5600X, Nvidia 2080Ti) using Falcor and a Cudnn

based solution.

The training data is generated using concurrent shadow mapping

and ray-tracing passes. The shadow mapping pass outputs three

perturbations of the buffers, obtained by jittering the emitter and

camera positions. The ray-tracing pass uses 1500 rays per pixel

distributed across 8 or more accumulation passes enabling 8x or

more MSAA. The ray-tracing pass simultaneously outputs shadows

with 4 different levels of softness. To summarize, each frame consist

of 3 perturbations of our input buffers and 4 antialiased ray-traced

images with increasing softness.

A visual inspection of the generated data is crucial. We compare

the unprocessed rasterized shadows with the ray-traced shadows.

A match between rasterized and ray-traced output is desired and

the two should have minimal and consistent bias, if any. For exam-

ple, there may be a difference in the position of shadows between

rasterization and ray-tracing due to the offset used for preventing

self-intersection.We find rescaling the scenes to the same dimension

useful for minimizing bias between rasterization and ray-tracing

and generating consistent data. Bias also depend on how we gener-

ate the rays - emitter to scene or vice versa. The twomay be different

depending on how backface culling is configured. We prefer emitter

to scene ray-tracing as the setup is closer to shadow-mapping.

6 NETWORK ARCHITECTURE ABLATION STUDY
We discuss the limitations of various other network architecture we

implemented. The first variation is inspired by Exponential Shadow

Maps [1], where we learn the parameter 𝛼 in the depth test approxi-

mation 𝑒𝛼 (𝑧−𝑧𝑓 ) . To remove non-linearity in the final network layer,

we perform the Adam-SGD optimization in log-space and exponen-

tiate the output during inference. However, injecting unprocessed

input 𝑧 directly to the output causes severe shadow-aliasing and
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Fig. 7. Our network’s ability to generalize to unseen trajectories (within the same scene) compared to output from competing techniques (MSM, PCSS,
Raytracing+Denoising) for hard and soft shadows. MSM-3 and MSM-9 are Moment Shadow Map variants using 3×3 and 9×9 prefiltering kernels. Conference
model ©Anat Grynberg and Greg Ward.

our loss function (VGG-19) is ineffective in correcting the aliasing

in log-space. In another variation, we tried denoising the rasterized

(from emitter) depth - 𝑧 using a separate network with ray-traced

depths as targets. We split the network in two halves - first half for

denosing the depth and second half for processing the output of

the first half into final shadows. We trained the two network end

to end. However, the architecture failed to generate good quality

final output compared to our vanilla network. We also tested other

variants of the same idea but were equally ineffective.

7 RESULTS AND COMPARISONS
Figure 7 compares our technique with other competing techniques

on trajectories that were not present in the training. Figure 8 shows

the application of our technique across untrained camera and emitter

trajectories. For each scene, we train a separate network using

a variety of emitter and camera configurations across a range of

softness. As such, a single network can generate both hard and soft

shadows where the softness is controlled using a scalar input. Figure

6 shows that our network generalizes across variety of shapes that

were not present in the training set.

8 LIMITATIONS AND FUTURE WORK
One of the current limitations of our technique is that it does not

naturally extend beyond a single light source. Resolving this is an

exciting avenue for future work. Another limitation is it does not

generalize well across amixture of scenes with widely different emit-

ter depth distributions. This is primarily due to the (purposefully)

compact size of our networks and their limited capacity to fit such

multi-modal data. To avoid this, one could potentially train multiple

networks across different depth variations and swap between them

networks (i.e., based on emitter distance) at runtime. Artifacts also

arise when the penumbra sizes exceed the receptive field of the

neural network and training tile size; our conservative penumbra
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Fig. 8. Figure shows the output of our network (shaded post-process) with varying penumbra sizes in the cutouts (unshaded). Each scene is trained
independently and tested on a validation set. The second row in each scene shows the error (superimposed on network oputput) w.r.t. reference. Hard-shadow
is indexed 0 while 4 indicates an emitter of diameter 50cm.

size estimate affords us the opportunity, however, to tailor our ar-

chitecture’s receptive field accordingly. Finally, our perturbation

loss can sometimes overblur fine geometric details, such as from
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thin features like wires, however the gains in temporal stability are

significant; fine tuning here can help to mitigate such overblurring.

An exciting avenue for future work involves extending our tech-

nique to a finite number of light sources. We can draw inspiration

from graph-coloring approaches [5] here, where non-overlapping

emitter frustums are grouped together in layers and each layer is

filtered independently. A neural approach could use a network that

takes as input buffers from 𝑛 sources and outputs the result. Dur-

ing training, we can disable (i.e., zero input) a fraction of the light

sources p (< 𝑛) to permit the network to more effectively learn the

response from each source, i.e., without confounding the effects

between sources.

Finally, runtime optimization of our network is another avenue for

exploration. The performance of a UNet depends primarily on mem-

ory bandwidth, as opposed to compute operations. A customized

pruning technique focused on improving the compute density by

reducing the number of temporary buffers is an interesting direction

of research. Also the network output is non-HDR, which can be

exploited to reduce the size of buffers.
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