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Figure 1: Our hard and soft shadowing method approaches the quality of offline ray tracing whilst striking a favorable position

on the performance-accuracy spectrum. On the high-performance end, we produce higher quality results than 𝑛 × 𝑛 Moment

Shadow Maps (MSM-𝑛). We require only vanilla shadow mapping inputs to generate visual (and temporal) results that approach

ray-traced reference, surpassing more costly denoised interactive ray-traced methods.

ABSTRACT

We present a neural extension of basic shadow mapping for fast,

high quality hard and soft shadows. We compare favorably to fast

pre-filtering shadow mapping, all while producing visual results

on par with ray traced hard and soft shadows. We show that com-

bining memory bandwidth-aware architecture specialization and

careful temporal-window training leads to a fast, compact and

easy-to-train neural shadowing method. Our technique is memory
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bandwidth conscious, eliminates the need for post-process temporal

anti-aliasing or denoising, and supports scenes with dynamic view,

emitters and geometry while remaining robust to unseen objects.
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1 INTRODUCTION

Shadows provide important geometric, depth and shading cues.

Real-time hard and soft shadow rendering remains a challenge,

especially on resource-limited systems. Pre-filtering based methods

[Annen et al. 2007; Donnelly and Lauritzen 2006; Peters and Klein

2015] are fast but approximate. They are prone to light leaking

artifacts, reduced shadow contrast, and limited contact hardening.

Interactive ray-tracing [Keller and Waechter 2009] coupled with

post-process denoising [Chaitanya et al. 2017; Schied et al. 2017]

and upscaling [Xiao et al. 2020] can deliver high quality dynamic

shadows, but even the fastest GPU ray-tracers fall short of the per-

formance demands of interactive graphics. Low ray-tracing hard-

ware adoption and the added engineering complexity of integrating

GPU ray tracers into rasterization-based pipelines is another limita-

tion. Pre-computation based methods [Mildenhall et al. 2020; Sloan

et al. 2002] do not generally support dynamic objects or near-field

light transport, and require significant memory.

We propose a machine learning-based method that generates

high quality hard and soft shadows for dynamic objects in real-

time. Our approach does not require ray-tracing hardware, has

high performance (< 6ms), requires little memory (< 1.5MBs), and

is easy to deploy on commodity low-end GPU hardware. We use

the output of “vanilla” rasterization-based shadow mapping (i.e.,

no cascades, etc.) to hallucinate temporally-stable hard and soft

shadows. We design a compact neural architecture based on the

statistics of penumbra sizes in a diversity of scenes. The network

admits rapid training and generalizes to unseen dynamic objects.

We demonstrate improved quality over state of the art in high-

performance pre-filtering based methods while retaining support

for dynamic scenes and approaching reference-quality results.

We show that careful feature engineering, application and mem-

ory aware architecture design, combined with a novel temporal sta-

bility loss results in a system with many favorable properties: apart

from compactness and high-performance, our output precludes

the need for post-process temporal anti-aliasing (TAA), further

reducing the renderer’s bandwidth requirements. We parameterize

our network by emitter size, allowing us to encode both hard and

soft shadow variation into a single trained net. We demonstrate its

effectiveness on several scenes with dynamic geometry, camera,

and emitters. Our results are consistently better than workhorse

interactive methods, and they also rival much slower (and more

demanding, system- and hardware-wise) interactive ray-tracing

and denoising-based pipelines. Finally, we discuss scene dependent

optimizations that further reduce our network size and runtime.

2 RELATEDWORK

Shadowmapping [Williams 1978] and its variants are efficient shad-

owing methods for point and directional lights in dynamic scenes.

Shadow map resolution and projection leads to shadow aliasing

artifacts, with solutions (e.g., depth biasing [Dou et al. 2014; King

2004]) leading to secondary issues and trade-offs. Modern shadow

mapping relies on delicately engineered systems that combinemany

cascaded maps [Engel 2006; Zhang et al. 2006]. Here, we refer read-

ers to a comprehensive survey [Eisemann et al. 2011].

Filtering-based methods prefilter (in emitter-space) depth-based

visibility to reduce aliasing. One simple suchmethodweights nearby

depth samples [Reeves et al. 1987]; this percentage closer filtering
remains a commonly used technique in interactive applications,

with a recent variant that modulates the filter size based on the

relative blocker and receiver positions is used to approximate soft

shadows [Fernando 2005]. More recently, a new class of filtering

methods replace binary depth samples with statistical proxies, al-

lowing for more sophisticated pre-filtering [Annen et al. 2007, 2008;

Donnelly and Lauritzen 2006] and coarse approximations of soft

shadows. Moment shadow maps [Peters and Klein 2015] are the

state of the art of these methods, but it can suffer from banding,

aliasing, light leaking in scenes with high depth complexity.

Screen-spacemethods treat G-buffers, including screen-projected

shadow map data, leveraging image-space locality and GPU paral-

lelization for efficient filtering in a deferred shading pipeline. Here,

accurate filtering here requires the determination of an potentially-

anisotropic filter kernel (due to perspective distortion), and so de-

pends non-linearly on the viewing angle [Zheng and Saito 2011] and

pixel depths [MohammadBagher et al. 2010]. Our method similarly

treats image-space G-buffer data, but we instead learn composi-

tional filters from data. High-fidelity soft shadows also benefit from

occluder depth estimates from both the emitter and shade point, of

which only the former is readily available from the shadow map

and the latter can be approximated using min- [2018] or average-

filtering [2010] of the projected shadow map. Again, we rely on

learning compositions of convolution and pooling layers to model

(the effects of) these depth estimates.

Ray tracing hardware opens up an exciting new avenue for dy-

namic hard and soft shadows. These methods, however, remain

power-inefficient and typically require post-process denoising (tra-

ditional [Schied et al. 2017] or machine learning-based [Chaitanya

et al. 2017; Munkberg and Hasselgren 2020]) and TAA [Edelsten

et al. 2019; Xiao et al. 2020] to attain modest interactivity.

3 OVERVIEW

Overall, our approach is straightforward; we generate a set of

screen-space buffers using a G-buffer and a shadow mapping pass

before passing them as inputs to our network. The output of the

network is compared against ray-traced shadows as target during

training. Although straightforward, simply using a UNet [Nalbach

et al. 2016; Ronneberger et al. 2015] without our proposed training
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Figure 2: Visualizing supervised learning pairs. The network

inputs are the rasterization buffers modulated by the size

of emitter (𝑟𝑒 ). The targets are generated using ray-tracing

according to the corresponding emitter size.
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Figure 3: Relative sensitivity of the selected features for

various scenes.

and optimization methodology yields a network that is temporally

unstable, bandwidth limited, heavy (>25MBs) and too slow (>100ms)

for real-time use. As such, our methodology is focused on making

conscious choices to preserve memory bandwidth while having

minimal impact on quality.

We train our network using screen-space buffers as features and

corresponding ray-traced shadows as targets. The approach allows

for easy integration into the rendering pipeline while providing

room for integration (possible future work) into supersampling

[Xiao et al. 2020] and neural-shading [Nalbach et al. 2016]. Our

approach is also suitable for tiled rendering - popular among mo-

bile devices. We develop a methodology to select a compact set of

features that preserve necessary information without increasing

memory bandwidth. We then show a simple technique to encode

shadows with variable emitter size in a single network. We de-

sign a loss function to enhance the temporal stability of network

without using historical buffers, thus further reducing bandwidth

requirements. We provide several network architecture optimiza-

tions aimed at reducing memory and compute requirements. While

our general architecture supports flexible emitter sizes, we show

a recipe to further optimize our network for a fixed emitter size,

enabling further trimming of network layers.

3.1 Supervised training pairs

We use supervised learning to train our neural network. The train-

ing examples are generated using rasterization and ray-tracing for

features and targets respectively. The rasterization pipeline includes

a G-buffer pass followed by a shadow mapping pass. Together they

generate the following screen-space buffers:

• view-space depth 𝑑 and normal n,
• emitter-to-occluder depth 𝑧 and emitter-space normal ne,
• pixel-to-emitter distance 𝑧𝑓 , the emitter radius (size) 𝑟𝑒 for

spherical sources, and

• dot products {𝑐𝑒 , 𝑐𝑐 } of n with the emitter direction and n
with the viewing direction.

The ray-tracing pass generates converged images of hard and soft

shadows using a brute force Monte-Carlo sampling and a mild

Gaussian filter. An 8x multi-sample anti-alising (MSAA) is also

applied to the ray-traced targets. We do not however use MSAA in

the rasterization pipeline as we expect the network to implicitly

learn anti-aliasing from the target images.

3.1.1 Softness control. We train a single network to predict a range

of shadows with varying softness. Note that the same input from

the rasterization is used to generate both hard and soft shadows.

The softness is controlled (on a continuous scale) using a scalar pa-

rameter indicating the size of the emitter. For training, the emitter

sizes are encoded as integer textures between 0 to 4, where 0 indi-

cates a point light and 4 indicates the largest emitter size (diameter

50 cm). Rather than passing the scalar values to the network as an

additional constant screen-space buffer, a more bandwidth efficient

approach is to add the scalar as a dc-offset to an already existing

buffer. We choose the cosine texture (𝑐𝑒 ) to add the emitter-size (𝑟𝑒 )

dc-offset to. The network targets are also changed corresponding

to the selected emitter size. See figure 2. During inference, the net-

work accepts a scalar between 0 and 4 and intrinsically interpolates

across discrete emitter values the network is trained with.

3.2 Feature selection

While dumping the content of the rasterization pass through a

network works, it is bandwidth inefficient and adds a 2.5ms penalty

to the cost of evaluating the network. The inefficient technique

involves adding a feature extraction network, cascaded before the

main network and training the two network end to end. The feature

extraction network consisting of several layers of 1x1 convolutions,

compresses all 15 channels of rasterizer output down to 4. A 1x1

convolution layer acts as fully connected layer across channels

without performing any convolution across pixels. We tested a 2-

layer deep 1x1 convolution network, recorded an overall error of

6.64×10
−3

across a suite of scenes involving hard and soft shadows.

Our approach eliminates the need for a feature extraction net-

work by systematic evaluation and selection of the rasterization

output buffers. We first introduce the notion of sensitivity, a metric

we use to quantify the importance of a feature. Sensitivity measures

a change in the network output due to a small perturbation in the

input. Intuitively, sensitivity is lower if a channel’s contribution in

explaining the output variation is lower. Absolute sensitivity 𝑆𝑖 for

the 𝑖𝑡ℎ input channel 𝑓𝑖 is given by

𝑆𝑖 = E

[
(𝜙 (𝑓𝑖 + 𝜖𝑖 ) − 𝜙 (𝑓𝑖 ))

0.1𝜎𝑖

]
, 𝜖𝑖 ∼ N(0, 0.1𝜎𝑖 ) (1)

where 𝜙 is the network, the random perturbation texture 𝜖𝑖 is

obtained by sampling a normal distribution. The standard deviation

𝜎𝑖 corresponding to the 𝑖𝑡ℎ channel is empirically estimated by

aggregating all pixels in the dataset for that channel. The formula

is repeated several times to reduce sampling noise. To compare

the sensitivities across different training instances, we compute

relative sensitivity as 𝑠𝑖 = 𝑆𝑖/
∑
𝑖 𝑆𝑖 .

Armed with relative sensitivity as our yardstick, our problem

is thus selecting a subset of features from a set of features 𝑈 ={
𝑑, n, 𝑧, ne, 𝑧𝑓 , 𝑐𝑒 , 𝑐𝑐

}
+
{
𝑧 − 𝑧𝑓 , 𝑧/𝑧𝑓 , 𝑐𝑐/𝑑, n · ne

}
. The first set of

buffers are obtained directly from the rasterization while the second

set is a composition from the first set. We take a tiered approach for

selecting the best features. In the first pass, we train our network

with all buffers in set 𝑈 and reject buffers with low relative sensi-

tivity. We repeat the process until all buffers have sensitivity higher

than 1.5%. Refer to supplemental material, section 1.0.2 for more

details. Our final set of buffers is as shown in figure 3. We obtain
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Figure 4: Effect of VGG loss on the final output. VGG loss

produces sharper edges for geometry and shadow silhouettes.

nearly the same error (6.67 × 10
−3
) as having a feature extraction

while saving an extra 2.5ms.

3.3 Loss function and temporal stability

The loss function plays two main role in defining the character-

istics of our network. It shapes the network to better fit the hard

edges for shadow silhouette and geometry, essentially performing

post-process anti-aliasing. Second, our loss function improves tem-

poral stability without using any historical buffers for training and

inference. Our approach not only saves memory bandwidth but

also enables easier integration into tiled renderers.

We achieve the first objective using a weighted combination of

per-pixel difference and VGG-19 [2015] perceptual loss. The effect

of VGG loss on the final output is shown in figure 4 and clearly

shows the anti-aliasing effect of VGG-19 on hard edges.

Existing methods typically improves temporal stability using

historical buffers to better support the network during inference

[Edelsten et al. 2019; Xiao et al. 2020] and also to reshape the loss

function [Holden et al. 2019; Kaplanyan et al. 2019] during training.

In our case, we do not use historical buffers but use random pertur-

bations of the input buffers for reshaping the loss landscape during

training. Temporal instabilities arise due to shadow-map aliasing,

where shadow map texels do not align one-to-one with screen pix-

els. As such small, movement in camera or emitter can cause large

changes in depth comparisons, especially around shadow silhou-

ettes. Inspired from noise-to-noise training [Lehtinen et al. 2018],

we train our network to learn from pairs of noisy inputs, in addition

to the traditional supervised learning pair. Our network intrinsi-

cally learns to damp sharp changes due to small perturbations with

minimal impact on overall quality as shown in figure 5. At each

training iteration, we perturb the camera and emitter position by

a small value proportional to the distance from the scene and size

of emitter. For each perturbation, we collect the input buffers for

training. The target is evaluated for only one of the perturbations.

We evaluate the network on each perturbations and minimize the

differences in the perturbed outputs as an additional loss function.

All network instances evaluating the perturbed inputs share the

same weights while backpropagation is only enabled through one

instance, as

L = 𝐿(𝑥0, 𝑥) +
∑𝑝

𝑖=1
𝐿(𝑥0, 𝑥𝑖 ), (2)

Network output (Perturb-On) Perturb-Off Perturb-On
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Figure 5: Comparing the temporal and spatial effect of per-

turbation loss. The application of perturbation loss reduces

temporal instability while causing an increase in spatial blur

as shown in the cutouts. We measure temporal instability by

comparing the network output between consecutive frames

while we measure spatial error by comparing the network

outputwith reference. Temporal instability and spatial errors

are represented using false colors purple/gold and red/blue

respectively.

where 𝐿(𝑦,𝑦) = 𝛼 · |𝑦 − 𝑦 | + (1 − 𝛼) · 𝑉𝐺𝐺19(𝑦,𝑦), and 𝑥𝑖 and 𝑥

are the network outputs and target. Only one network output-𝑥0
has backpropagation enabled through it. We set 𝛼 = 0.9 and the

number of perturbations 𝑝 = 3.

3.4 Temporal stability measurement

Several techniques exist for measuring perceptual similarity with

respect to a single reference frame [Andersson et al. 2020; Wang

et al. 2003] or reference video [Mantiuk et al. 2021]. These tech-

niques measure the spatio-temporal difference which indicates the

overall reconstruction quality across screen-space and time. Since

we sacrifice spatial quality for temporal stability, using these metric

may not indicate a reduction in temporal instability due perturba-

tion loss, even when there is a clear visual improvement in temporal

stability. Thus we formulate our own metric to measure only the

temporal changes without considering spatial similarity with ref-

erence. To measure flickering, we find the motion-vector adjusted

per-pixel temporal difference [Yang et al. 2020]. Since flickering can

be quantified as an abrupt change in the pixel intensities between

frames, we penalize the large differences more by passing the tem-

poral pixel difference through an exponential. We aggregate the
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tween Perturbation Loss and TAA. Reference is trained with-
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tional pass after network (trained without perturbation loss)

evaluation requiring extra 1.3ms.

result across all pixels and frames, with

𝐸 =
1

𝑃

∑︁
𝑝,𝑡

{exp(𝛼𝐷𝑡 (𝑝)) − 1} , (3)

where 𝐷𝑡 (𝑝) = |𝐼𝑡 (𝑝) − 𝐼𝑡−1 (𝑚(𝑝)) | is a per-pixel difference be-

tween two consecutive frames at time 𝑡 and𝑚(𝑝) abstracts away
the motion-vector adjusted lookup at pixel 𝑝 in the previous frame.

We set 𝛼 = 3, which controls the penalty for large changes in inten-

sity through time, and the normalizing factor 𝑃 is the total number

of pixels. We reject pixels that fail depth and normal comparison

with its reprojection.

Figure 6 contrasts the effect on temporal stability between our

loss and TAA (1 last frame): the improvement in temporal stability

with our perturbation loss is strongest in scenes with dynamic

emitters and non-negligible, albeit smaller with dynamic view.
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3.5 Network architecture and optimizations

The original UNet [Ronneberger et al. 2015] architecture is too

slow (>100ms) to fit into a real-time graphics pipeline. As such, we

start with trimming the network down. Our generic network has 5

layers, however, each layer composed of one 3x3 convolution and

one 1x1 convolution layers as opposed to the standard double 3x3

convolution. A major departure from the original UNet is using

bi-linear interpolation instead of expensive transpose convolutions

for upscaling. We also use algebraic sum instead of a concatenation

layer for merging the skip connections on the decoder side. A posi-

tive side effect of using a sum layer is the reduction in the number

of hidden units on the decoder side. With these modifications we re-

duce the network size from 25MB to just 2.5MB, while the runtime

is minimized to 28ms. Quantizing the network to half-precision

further reduces the size to 1.5MB and 17ms runtime.

Other modifications for improving temporal stability without

affecting performance includes using Average-pool instead of Max-

pool and removing the skip connection in the first layer. Replacing

max-pool with average-pool reduces extremities during processing

and smooths out the output. As raw shadow map depth values are

prone to aliasing noise, removing the first skip connection ensures

the noisy input does not affect the output directly.

At this stage, we analyze the performance and error of our net-

work before optimizing it further. Our validation error is 6.67×10−3
over an ensemble test scenes. From figure 7, we see that the first

layer (combined encoder-decoder) requires more time compared to

the rest of the layers combined. Moving from inner (#4) to outer lay-

ers (#0), the resolution is quadrupled while the number of channels

is halved. Consequently, the effective cached memory bandwidth

doubles as we move from inner to outer layers; however, with in-

creasing resolution, memory operations are also more prone to

cache misses. In practice, we see more than doubling of runtime as

we move towards the outer layers. Refer supplemental section 3.

We further optimize by changing the first layer which consumes

disproportionately more time. A naive approach is to replace the

first layer with a downsampler on the encoder side and upsampler

on the decoder side of UNet . However, simple downsampling and

upsampling loses information contained in the input and also pro-

duces less sharp output. Instead, we flatten a 2x2 square of pixels

into 4 separate channels and use the restructured buffer as the input
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Figure 8: Figure showing the effect of all optimizations in

section 3.5.
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Figure 9: Comparing our network’s ability to generalize to unseen objects (buddha, bunny, dragon) with other competing

techniques (MSM, PCSS, Raytracing & Denoising) for hard and soft shadows. MSM-3 and MSM-9 are Moment Shadow Map

variants using 3×3 and 9×9 prefiltering kernels.

for second layer. Thus we rearrange the input and change the buffer

dimensions from (ℎ ×𝑤 ×𝑐ℎ) to (ℎ/2×𝑤/2× 4𝑐ℎ). More concretely,

instead of feeding the first layer with full resolution (1024×2048) in-
put with 4 channels, we feed the second layer directly with quarter

resolution (512 × 1024) input with 16 channels. We do the inverse

on the decoder side; rearrange 4 output channels into a 2x2 pixel

square. Note that the rearrangement of buffers does not add any

extra temporary storage for the second layer while removing the

first layer (Conv2D operations) completely. On the decoder side, to

improve training convergence, we upscale the first output channel

to full resolution using a bi-linear interpolation. We then add rest

of the three channels to the interpolated output, filling in rest of

the details. The performance of our optimized network is 5.8ms.

3.6 Network depth optimizations

Our optimizations so far are generic and apply across scene and

emitter configurations. Below, we explore scene specific optimiza-

tions and tune our network architecture for compactness. Shal-

lower networks have many pragmatic benefits: it has exponentially

(power of 2) fewer parameters, is faster to train, and admits faster

runtime inference. Instead of relying on adhoc architecture tuning,

we will choose architectures based on their ability to capture the

shadowing effects we target. Specifically, we will build a simple

model to estimate the maximum penumbra size for a scene configu-

ration, and then relate this size exactly to the depth of the network

suited to reproducing them. We empirically validate our model.

To compute the world space penumbra size, our simplified model

assumes a spherical occluder (or, conservatively, a bounding sphere

around occluding geometry). When generating training samples,

we additionally measure the minimum and maximum occluder
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a. Model estimating penumbra

𝑟𝑒
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Center line
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𝑥𝑎 > 0

Penumbra
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b. Estimating parameters
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Figure 10: A simplified model to estimate the penumbra size

at a given pixel.We assume our occluder is spherical in shape,

forming a convex bounding-sphere around the occlusion

geometry as shown in figure (a) on the left. Figure (b) shows

a simplified diagram to estimate the parameters 𝜃, 𝜃𝛿 .

distances 𝑧𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛 (figure 10, a). We then estimate the penumbra

width at a pixel as the sum of inner (𝑥𝑎) and outer (𝑥𝑏 ) penumbra

(figure 10, b) as {𝑥𝑎, 𝑥𝑏 } = 𝑧𝑓 tan(𝜃 ± 𝜃𝛿 ) − 𝑟𝑒 . We derive the

parameters 𝜃, 𝜃𝛿 in the supplemental, section 4.

After computing a histogram of penumbra sizes in screen-space

for each pixel across all the training frames, we select the high-

est 95th percentile penumbra size as a conservative bound on the

receptive field size requirements for our neural architecture.

We can modulate the per-layer convolutional layer parameters

(kernel size, stride) and pooling operation parameters in order to

meet the target receptive field requirements. If we set each convo-

lutional layers to halve the spatial resolution, the effective receptive
field of the network grows with ×2𝑙 for an 𝑙-layer network. Exclu-
sively using 3 × 3 kernels, we can solve for 𝑙 = log

2
(𝑝𝑤/3), where

𝑝𝑤 is the conservative screen-space penumbra width.
Table 1 provides an empirical validation of our technique. We

train three networks with 3,5, and 7 layers using the same dataset.

The dataset consist of scenes with mixture of penumbra sizes. The

penumbra size estimates are computed using our model. During

inference, networks with receptive field lower than the predicted

penumbra size perform poorly as marked in red color. A more

Table 1: MSE for variable penumbra sizes and with 3/5/7-

layer nets.

Predicted Penumbra

Width (in pixels)

Network layers →
Receptive field size (in pixels)

3 → 24 5 → 96 7 → 384

21 0.005 0.005 0.012

90 0.083 0.009 0.018

180 0.161 0.042 0.019

MSE: 0.095 MSE: 0.096 MSE: 0.096 MSE: 0.097

Figure 11: Generalization to untrained objects (red, first row)

in a trained scene. Second row visualizes false color errorw.r.t.

reference. From left to right, emitter size increases linearly

from 0 (hard shadow) to 50 cm diameter.

detailed analysis of the empirical verification is provided in the

supplemental section 4.1.

4 RESULTS AND COMPARISONS

We demonstrate our method on a diversity of scenarios. We aug-

ment static environments (e.g., rooms) included in our training set

to include untrained objects at runtime, illustrating an important

use case for interactive settings like games (figure 11). We train a

single network on the Bistro interior scene with varying emitter

sizes, emitter positions and camera trajectories and introduce the

(untrained objects) Buddha, bunny, and dragon for validation.

Comparison. In the soft-shadowing regime, our comparisons

focus on two classes of baseline methods: first, high-performance

rasterization-based approximations such as Moment Shadow Maps

(MSM) [Peters and Klein 2015] and Percentage Closer Soft Shadows

(PCSS) [Fernando 2005] that align with our engineering (i.e., fully

rasterization-based; no ray-tracing) and performance targets as our

primary baseline; second, we use interactive GPU ray-tracing with

post-process denoising as a more accurate “interactive” baseline,

i.e., 5-SPP raytracing with SVGF [Schied et al. 2017]. Note that,

unlike our method, neither MSM nor PCSS allow explicit control

of penumbra style using emitter size; as such, we adjust the pre-

filtering kernel size for MSM and PCSS to achieve a penumbra size

that most closely matches reference renderings. We use kernel sizes

of 3×3 for MSM and 9×9 for PCSS. Our PCSS baseline also includes
a depth-aware post-filtering.

Ourmethod consistently improves shadow quality at competitive

performances (figure 9). Refer to our video to observe the temporal

stability of our results. For hard shadows, we compare to 3×3MSM,

obtaining alias-free shadows without any light leaking. Please refer

to the supplemental section 7 for more results, comparisons.

Runtime comparisons are measured at a resolution of 2k×1k on

an AMD 5600X CPU and Nvidia 2080Ti GPU. The timings in all

figures, both main paper and supplemental, exclude G-Buffer gener-

ation which consistently requires an additional 2-3 ms (depending

on the scene) across all techniques. Each scene is trained on ≤ 400

images of resolution 2k×1k on a cluster for roughly 16 hours (75

training epochs).
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5 LIMITATIONS

Our technique shares similar limitations to other screen-space

methods. The unavailability of layered depth information, both

in camera- [Ritschel et al. 2009] and emitter-space [Jesus Gumbau

2018] leads to an ill-posedness of the problem that results in ap-

proximation error. In camera space, the lack of peeled-depth data

complicates the determination of mutual visibility between pixels.

Similarly, computing the blur kernel size to soften shadow silhou-

ettes relies on the distance between shading points and occluders,

which is also unavailable in our setting. Our network and train-

ing methodology are effectively designed to compensate for this

ill-posedness, bridging the visual gap in a diversity of object/scene

arrangements by leveraging complex patterns inherent in the data.

Figure 12 highlights a standard failure case and our supplemental

includes additional discussion (section 8).

6 CONCLUSIONS

We presented a compact, fast neural method and training loss suited

to temporally-coherent hard and soft shadows synthesis using only

basic shadow map rasterized inputs. We showed that – with a

careful, problem-specific architecture design and a new, simple

temporal loss – a single small network can learn to hallucinate hard

and soft shadows from varying emitter sizes and for a diversity

of scenes. It is robust to the insertion of unseen objects, requires

only a modest training budget, and precludes the need for any post-

process denoising and/or TAA. Our approach yields stable hard and

soft shadows with performance similar to workhorse interactive

approximations and higher quality than (more expensive) GPU-

raytracing and denoising (and TAA) alternatives.

Rasterization-based approaches for soft and hard shadows rely

on heuristics and brittlemanual tuning to achieve consistent, visually-

desirable results. Our data-driven approach precludes such tuning,

improving shadow quality at a modest cost, producing plausible and

temporally-coherent soft shadows without any ray-tracing. Ours is

a compact neural shading-based framework [Nalbach et al. 2016]

suitable for low-power tiled-rendering systems, striking an interest-

ing trade-off in a complex design space. We demonstrate benefits

that largely offset the added training and integration complexity.

In the future, pursuing more aggressive neural architecture op-

timizations, including quantization and procedural architecture

search, could likely further improve inference performance. When

Foliage-hard Overlapping Mesh Foliage-soft

MSE :0.047 MSE: 0.003 MSE: 0.022

Figure 12: Limitations of our method with high-

frequency/high-depth complexity. Orange, blue, and

green boxes highlight visual artifacts due to limited emitter

and camera depth information, and due to undersampled

training scenarios (i.e., loss of fine details).

coupledwith sparsification using, e.g., lottery ticket-basedmethod [Fran-

kle and Carbin 2018], we suspect that significant additional perfor-

mance gains are possible, all without sacrificing quality.
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