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Fig. 1. We propose the first framework that achieves consistent high-quality indoor lighting prediction in both spatial and temporal domains. Our
predicted HDR environment maps recover not only the visible and invisible light sources but also detailed reflection of visible surfaces, which enables
realistic object insertion for both mirror and specular objects. Moreover, when the input is a video sequence, our framework can progressively refine
our lighting prediction while keeping the transition smooth. (Please use Adobe Acrobat and click the figure to see the animated results.)

We propose a physically-motivated deep learning framework to solve a gen-
eral version of the challenging indoor lighting estimation problem. Given a
single LDR image with a depth map, our method predicts spatially consistent
lighting at any given image position. Particularly, when the input is an LDR
video sequence, our framework not only progressively refines the lighting
prediction as it sees more regions, but also preserves temporal consistency
by keeping the refinement smooth. Our framework reconstructs a spherical
Gaussian lighting volume (SGLV) through a tailored 3D encoder-decoder,
which enables spatially consistent lighting prediction through volume ray
tracing, a hybrid blending network for detailed environment maps, an in-
network Monte-Carlo rendering layer to enhance photorealism for virtual
object insertion, and recurrent neural networks (RNN) to achieve temporally
consistent lighting prediction with a video sequence as the input. For training,
we significantly enhance the OpenRooms public dataset of photorealistic
synthetic indoor scenes with around 360K HDR environment maps of much
higher resolution and 38K video sequences, rendered with GPU-based path
tracing. Experiments show that our framework achieves lighting prediction
with higher quality compared to state-of-the-art single-image or video-based
methods, leading to photorealistic AR applications such as object insertion.
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1 INTRODUCTION
The ubiquity of mobile devices for acquiring, sharing and editing
videos suggests novel AR applications such as photorealistic scene
enhancement and telepresence. High-quality consistent lighting es-
timation for a single image or across a video sequence is a crucial
need for such applications. However, it remains a significant chal-
lenge, especially in indoor scenes where geometry, materials and light
sources are diverse and produce images through complex, long-range
interactions.

On the one hand, images or videos captured by the camera on
mobile phones or tablets are usually very sparse and incomplete. For
example, in a typical mobile phone photo, only 6% of the panoramic
scene is captured by the camera [LeGendre et al. 2019]. As a result,
the inputs for lighting estimation are just low dynamic range (LDR)
images with a very limited field of view (FoV). Therefore, to generate
highly accurate indoor lighting estimation, one must hallucinate
important HDR information and invisible parts of the scenes.

On the other hand, to allow photorealistic applications, the lighting
prediction should satisfy several demands on quality. High-frequency
directional lighting is essential for rendering high-quality shadows
and specular highlights in scenarios such as bright sunlight through
an open window. HDR lighting is necessary for rendering general
non-mirror materials, while relatively high-resolution details need
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Fig. 2. Overview of our deep learning-based framework to predict spatiotemporally consistent lighting at arbitrary locations of indoor scenes. Our
framework consists of two parts: a spherical Gaussian lighting volume reconstruction network that reconstructs visible and invisible light sources
and reflection, and a blending network that adds the detailed reflection from visible surfaces. Both parts use RNNs to accumulate observations from
different frames and progressively refine our predictions. (Please use Adobe Acrobat and click the figure to see the animation.)

to be preserved for rendering realistic mirror reflections. Moreover,
when rendering multiple (moving) objects, the predicted lighting
should remain spatially consistent, which requires proper modeling of
complex interactions between light sources, geometry, and materials.
With a video sequence as input, it is advantageous to progressively
improve the lighting prediction as more regions become visible while
maintaining temporal consistency to avoid flickering.

While several recent works propose deep learning-based frame-
works for indoor lighting, they do not satisfy all the above require-
ments. Some prior works only achieve photorealistic outputs under
certain circumstances (e.g. non-mirror surface [Li et al. 2020a; Garon
et al. 2019], mirror surface only [Srinivasan et al. 2020] , diffuse
lighting [Srinivasan et al. 2020], single object [Gardner et al. 2017]
etc.) or need extra non-trivial inputs (e.g. stereo image [Srinivasan
et al. 2020]). Further, none of the existing methods take a video as
input to progressively improve lighting prediction while preserving
spatiotemporal consistency.

Motivated by the above, we propose a novel hybrid learning-based
framework for consistent HDR indoor lighting prediction, taking ei-
ther a single LDR image or video sequence as input. Our framework
is designed to generate high-quality lighting prediction that enables
various AR applications with photorealistic visual appearances. Ta-
ble 1 compares recent lighting estimation methods, which shows that
our method achieves all the desirable properties.

We achieve the above distinctions through the novel design of
both physically-based representations and deep networks. The whole
pipeline is summarized in Figure 2. We first reconstruct a spherical
Gaussian lighting volume (SGLV) representation that is specifically
designed to model complex HDR indoor lighting (Figure 3). Com-
pared to the RGB𝛼 volume representation [Srinivasan et al. 2020], our
representation inherits the advantages of rendering spatially consis-
tent lighting while better modeling high-frequency directional light-
ing, like sunlight shining through windows. However, volume rep-
resentations have difficulties recovering details of reflection, which
are essential to render realistic mirror surfaces. Prior works increase
the volume resolution or using multi-scale volumes [Srinivasan et al.
2020; Wang et al. 2021], which makes their framework memory

intensive and not suitable for mobile applications. Instead, we adopt
a hybrid method by proposing a blending network to enhance de-
tails for the visible regions of the HDR environment map, which is
lightweight and achieves higher quality reflection compared to prior
works. To boost HDR lighting prediction and photorealism for AR
applications, we introduce a physically-based rendering loss through
an in-network Monte Carlo rendering layer that renders a glossy
sphere from the lighting predictions. Finally, to handle video inputs,
RNNs are introduced to progressively refine the lighting prediction
while maintaining temporal consistency, even when the input depth
maps are not fully consistent.

Our framework is trained using the OpenRooms dataset [Li et al.
2020b], a large-scale, photorealistic synthetic indoor scene dataset
with physics-based materials and lighting. The OpenRooms dataset
contains over 120K HDR images with densely sampled spatially-
varying per-pixel environment maps. We augment the dataset by
rendering over 360K HDR environment maps at a much higher reso-
lution of 120× 240 (compared to the original 16× 32), which enables
us to render much more realistic reflection for mirror surfaces. To
train our network for video inputs, we also render around 38K video
sequences of 31 frames each at a resolution of 240×320. Experiments
on a widely-used real spatially-varying indoor lighting dataset show
that our single image lighting estimation quality is comparable to the
state-of-the-art [Li et al. 2020a], while it can handle more complex
materials with better spatial consistency. More importantly, to our
best knowledge, our method is the first learning-based indoor lighting
prediction framework that can enhance lighting prediction with video
inputs and produce temporally consistent outputs. Figure 1 presents
an animation of our spatiotemporally consistent HDR indoor lighting
prediction, where we show 10 frames of our prediction from a video
sequence. We include the full video in the supplementary to better
demonstrate the quality of our lighting prediction. From the anima-
tion, we can see that our framework can recover both the detailed
reflection and HDR invisible light sources, with spatial consistency
as we insert mirror spheres at different locations. As we move our
camera around, our method can progressively improve the prediction
by adding more details and meanwhile, keep the transition smooth,

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.



Spatiotemporally Consistent HDR Indoor Lighting Estimation • 3

HDR Spatially 
varying

Spatial
consistency

Directional
light

Detail
s

Single 
image

Temporal 
consistency

Gardner17 ✓ ✗ -- ✓ ✗ ✓ ✗
LeGendre19 ✓ ✗ -- ✓ ✗ ✓ ✗

Song19 ✓ ✓ No 
guarantee ✓ ✓ ✓ ✗

Garon19 ✓ ✓ No 
guarantee

No high 
frequency ✗ ✓ ✗

Gardner19 ✓ ✓ No
occlusion ✓ ✗ ✓ ✗

Sengupta19 ✓ ✗ -- No high 
frequency ✗ ✓ ✗

Li20 ✓ ✓ No 
guarantee ✓ ✗ ✓ ✗

Srinivasa20 ✗ ✓ ✓ No high 
frequency ✓ ✗ ✗

Zhao20 ✓ ✓ No 
guarantee

No high 
frequency ✗ ✗ ✗

Zhu21 ✓ ✓ No 
guarantee ✓ ✗ ✓ ✗

Somanath21 ✓ ✓ No 
guarantee ✓ ✓ ✓ ✗

Wang21 ✓ ✓ ✓ ✓ ✓ ✓ ✗

Zhan21 EM ✓ ✗ No 
guarantee ✓ ✗ ✓ ✗

Zhan21 Sparse ✓ ✓ No 
guarantee ✓ ✗ ✓ ✗

Zhan22 ✓ ✓ No 
guarantee ✓ ✓ ✓ ✗

Li22 ✓ ✓ ✓ ✓ ✗ ✓ ✗
Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. A summary of state-of-the-art learning-based lighting estima-
tion methods for indoor scenes. Our method achieves all the desirable
properties and is the only method that can utilize video inputs to
progressively refine predicted lighting while maintaining temporal con-
sistency.

as demonstrated in the reflection, highlights, and shadows of inserted
objects.

In summary, our key contributions are:
• A hybrid framework specifically designed for complex HDR

indoor lighting, especially HDR light sources, directional light-
ing and detailed reflection.

• RNN-based modules that progressively refine lighting predic-
tion with video inputs, while maintaining temporal consistency
even with not fully consistent depth inputs.

• State-of-the-art lighting prediction on real data, allowing pho-
torealistic AR applications with fewer constraints.

2 RELATED WORKS
Indoor lighting estimation is a long-standing challenge in computer
vision and graphics and is of fundamental importance to achieving
photorealistic augmented reality. The pioneering work by Debevec
captures indoor lighting by taking multiple images of a mirror sphere
with different exposure times [Debevec 1998]. While it can cap-
ture high-quality detailed HDR environment maps, it needs careful
calibration, which is not friendly to non-expert users and cannot
model spatially-varying lighting effects. Several model-based meth-
ods formulate indoor lighting estimation as part of a holistic inverse
rendering framework and jointly reason about geometry, reflectance
and lighting by minimizing hand-crafted energy functions. Notably,

Barron and Malik [Barron and Malik 2013] model the indoor scene
appearance with a diffuse reflectance map and a mixture of geome-
try and lighting basis driven from data priors, which allows them to
simultaneously recover diffuse reflectance, refined depth map and per-
pixel lighting from a single RGBD image. Karsch et al. [Karsch et al.
2014] approximate indoor lighting by selecting a HDR panorama
from a large-scale dataset. Then, they optimize the light source posi-
tion and intensity by solving an inverse rendering problem based on
estimated diffuse reflectance and depth map. These methods rely on
certain assumptions to simplify the problem and therefore may not
achieve high-quality lighting estimation in complex scenes, with the
presence of complex directional lighting, strong shadows caused by
large occlusion and highly glossy materials.

Recent methods apply deep learning frameworks to tackle this
highly ill-posed classical challenge. However, as summarized in
Table 1, none of them can achieve all the desirable properties for
indoor lighting estimation. Akimoto et al. [Akimoto et al. 2022] and
Dastjerdi et al. [Dastjerdi et al. 2022] extrapolate a 360 degree field
of view panorama from a single image at the center of it using a deep
generative network. Gardner et al. [Gardner et al. 2017], Sengupta
et al. [Sengupta et al. 2019], Zhan et al. [Zhan et al. 2021b], and
LeGendre et al. [LeGendre et al. 2019] predict a single lighting for
the whole indoor scene. These methods cannot model important
spatially-varying lighting. Several methods can predict spatially-
varying lighting from a single indoor image. Particularly, Garon et
al. [Garon et al. 2019] and Zhao et al. [Zhao and Guo 2020] use
spherical harmonics bases [Ramamoorthi and Hanrahan 2001] to
approximate indoor HDR environment maps and therefore can only
recover low frequency signals. Li et al. [Li et al. 2020a], Zhu et al.
[Zhu et al. 2022], and Li et al. [Li et al. 2022] use spherical Gaussian
lobes while Zhan et al. [Zhan et al. 2021a] use wavelets instead to
better preserve high-frequency directional lighting. However, neither
of them can recover the near-field details in an environment map,
which is important for rendering realistic reflectance on mirror and
highly glossy surfaces. Song et al. [Song and Funkhouser 2019],
Somanath et al. [Somanath and Kurz 2021], and Zhan et al. [Zhan
et al. 2022] directly predict the 2D environment map by inpainting the
partial observation from the input image through generative modeling.
Nevertheless, one important limitation of all the above spatially
varying lighting prediction methods is that they cannot guarantee
spatial consistency. This may cause flickering artifacts if we use their
predicted lighting to render a virtual object moving around the scene.
In contrast, Gardner et al. [Gardner et al. 2019] and Srinivasan et
al. [Srinivasan et al. 2020] can predict spatially consistent lighting
at any positions, by reconstructing environment maps from their
3D scene representations, i.e. spherical Gaussian light sources and
RGB𝛼 volume, through physics-based ray tracing. However, Gardner
et al. cannot handle occlusion, while Srinivasan et al. cannot handle
HDR and directional lighting. A very recent work [Wang et al. 2021]
by Wang et al. solves the limitation of [Srinivasan et al. 2020] by
introducing spherical Gaussian volume to handle directional lighting,
which is similar to our proposal. However, both of them use high-
resolution volumes to recover detailed reflection while our hybrid
representation achieves better details with much less computational
cost. More importantly, none of them can handle video inputs with
temporal consistency.
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Each voxel 𝑖:
𝒄𝑖 : Uniform RGB intensity
𝛼𝑖 :    Opacity
𝒘𝑖 :   Directional RGB intensity
𝜆𝑖 :    Bandwidth of SG lobe
ො𝒔𝑖 :    Lighting direction

Input Photo

Spherical Gaussian Lighting Volume
Spherical Gaussian in 3D

ො𝒔𝑖

𝜆𝑖

Fig. 3. Visualization of spherical Gaussian lighting volume.

The only prior method that considers video inputs is proposed by
Wei et al. [Wei et al. 2020]. However, their method is not demon-
strated to be able to use incoming frames to progressively improve the
lighting prediction. On the contrary, our method is the first learning-
based indoor lighting prediction framework that can enhance lighting
prediction with video input, while preserving both spatial and tempo-
ral consistency. Our method achieves all the desirable properties for
indoor lighting prediction, which allows us to obtain a higher level of
photorealism in various AR applications with better generalization.

3 SPHERICAL GAUSSIAN LIGHTING VOLUME
Indoor lighting presents the most complex and diverse challenges for
lighting estimation, such as complex occlusion, directional sunlight,
and strong global illumination. Thus, we need a lighting representa-
tion that is expressive enough to model various types of light transport.
Further, this representation should enable fusing the observations
from different views, to allow extension to video inputs (§ 4).

We therefore adopt a volumetric lighting representation to render
an HDR environment map at any given location through differen-
tiable volume ray tracing, which allows spatially consistent lighting
prediction with details, while enabling multi-view fusion for video
inputs. The starting point is the representation of [Srinivasan et al.
2020], which defines an RGB color and an opacity 𝛼 for each voxel.
Such a representation assumes each voxel uniformly emits light in
every direction, hence, poorly deals with directional lighting, such as
the sunlight through the windows. Following the success of the recent
work [Li et al. 2020a], we enhance the volumetric representation by
introducing an additional spherical Gaussian lobe to better model
directional lighting. We term our representation as spherical Gauss-
ian lighting volume (SGLV). Similar representation is proposed in a
recent work by Wang et al. [Wang et al. 2021].

Our SGLV representation is illustrated in Figure 3. Besides an
RGB𝛼 value, each voxel is augmented with three SG parameters:
w ∈ R3 to control the intensity, 𝜆 ∈ R to control the bandwidth and
unit vector ŝ ∈ R3 to control the direction. When rendering an HDR
environment map using SGLV, we modify the volume ray tracing
method accordingly to accumulate both the RGB value c and the

RGB𝛼

SGLV

Fig. 4. Comparison of RGB𝛼 and our spherical Gaussian lighting
volume (SGLV) for indoor lighting estimation on a real example. The
SGLV allows a better encoding of high-frequency directional lighting in
indoor scenes, which leads to sharper highlights and shadows

SG parameters {w, 𝜆, ŝ} using standard differentiable volume ray
tracing. More specifically, suppose we render the HDR environment
map 𝐿 at a randomly sampled location. Let l̂ be a ray corresponding
to an arbitrary pixel of 𝐿 and I be the indices of points sampled
uniformly on the ray l̂, organized in ascending order according to
their distance to the sampled location. The accumulation of all the
SGLV parameters for the ray l̂ can be computed as:

xl̂ =
∑︁
𝑖∈I

𝛼𝑖x𝑖
∏

𝑗<𝑖, 𝑗∈I
(1 − 𝛼 𝑗 ), x ∈ {c,w, 𝜆, ŝ}. (1)

At each step point, both x𝑖 and 𝛼𝑖, 𝑗 are obtained through trilinear
interpolation from nearby voxels so that the whole process is differ-
entiable. After obtaining the accumulated parameters, we compute
the intensity 𝐿l̂ along direction l̂ of the HDR environment map 𝐿 as:

𝐿l̂ = cl̂ +wl̂ exp
(
𝜆(l̂ · ŝl̂ − 1)

)
(2)

Figure 4 shows a comparison of lighting prediction between the
RGB𝛼 volume and our proposed SGLV. We train our proposed
method with two different lighting representations and then use
the lighting predictions from two different representations to render
virtual mirror spheres into a real indoor scene image. It clearly shows
that our SGLV representation can better model the high-frequency di-
rectional sunlight coming from the window, leading to more realistic
specular highlights and shadows.

4 PHYSICALLY MOTIVATED NETWORK DESIGN
We now present our physically motivated deep learning based frame-
work for spatially and temporally consistent high-quality HDR indoor
lighting estimation at arbitrary locations. The overall architecture is
summarized in Figure 5. We first introduce our light-weight 3D CNN
for single image SGLV prediction, followed by a 2D blending CNN
to improve the details. Next, we extend our frameworks with RNN
architectures so that we can handle video sequences with temporal
consistency. At the end of this section, we discuss the dataset creation
process and important implementation details.
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(a) 3D encoder-decoder for SGLV reconstruction (b) Blending network for detailed environment maps

Fig. 5. Summary of our physically-motivated deep network architecture for indoor lighting estimation from a single image or a video sequence.
𝐶𝑎-𝐾𝑏-𝑆𝑐-𝑃𝑒 means a convolution layer with channel 𝑎, kerneal size 𝑏, stride 𝑐 and padding 𝑒. The RNN modules added for handling video
sequences are surrounded by black dashed lines. Specifically, our encoder-decoder architectures have only two skip-connections, which allows us
to preserve high-frequency signals but also reduce memory consumption, especially for video inputs.

4.1 Single image indoor lighting prediction
3D volume initialization. We first build an initial 3D RGB𝛼 vol-

ume as the input to our 3D CNN for volume completion, by projecting
the input image 𝐶 into 3D space based on depth map 𝐷, which can
either be predicted by a deep network or captured by a sensor. We
initialize the 𝛼 value first. Let v be the center of a voxel, 𝑣 be the
voxel’s side length, proj(·) be the projection function projecting to
the image plane, o be the center of the image plane and ẑ be its orien-
tation. We define 𝐷p to be the depth value of p on the image plane,
computed through bilinear interpolation. The initial 𝛼 is computed as

𝛼v =


4( 1
𝑣 ((v − o) · ẑ − 𝐷proj(v) ) + 1) 𝐷proj(v) > (v − o) · ẑ

4( 1
𝑣 (𝐷proj(v) − (v − o) · ẑ) + 5) 𝐷proj(v) ≤ (v − o) · ẑ

𝛼v = clip(𝛼v, 0, 1)

Intuitively, we smooth the 𝛼 value in front of and behind the scene
surface unevenly so that the rendered HDR environment map can
have sharp edges but without holes. For voxels that are behind the
camera or outside the camera frustum, we set their initial 𝛼 to be 0.

Given the value of 𝛼 , the initial color value c is computed as

cv = 𝛼v𝐶proj(v) ,

where 𝐶proj(v) is similarly computed through bilinear interpolation.
However, this initial RGB𝛼 volume does not yet encode all the
information from the depth map. Namely, the space inside the camera
frustum, between the camera and the scene surface, should be empty.
To incorporate this information, we augment the initial volume with
another channel 𝑒. We set 𝑒v to be −1 if v should be empty according
to the depth map 𝐷:

𝑒v =


−1 1

𝑣 (𝐷proj(v) − (v − o) · ẑ) > 3

0 otherwise.

As shown above, we only set 𝑒v to be -1 if v is three voxels away
from the scene surface, in case the depth map 𝐷 is inaccurate.

3D encoder-decoder for SGLV reconstruction. We train a rela-
tively light-weight 3D encoder-decoder to reconstruct SGLV from the
initial RGB𝑒𝛼 volume. Formally, let �̃� represent the initial volumes
and 𝑉 represent predicted volumes. Our 3D CNN encoder-decoder
can be written as

𝑉𝑓0 ,𝑉𝑓1 = SGEncoder(�̃�c, �̃�𝛼 , �̃�𝑒 )
𝑉c,𝑉𝛼 ,𝑉w,𝑉𝜆,𝑉ŝ = SGDecoder(𝑉𝑓0 ,𝑉𝑓1 )

where 𝑉𝑓0 and 𝑉𝑓1 are two feature volumes connecting encoder and
decoder, as shown in Figure 5.

It is important to ensure that the predicted volumes are consistent
with the input depth map, i.e. the voxels inside the camera frustum
in front of scene surfaces should always be empty. Otherwise, the
lighting prediction near the surface can be wrong due to the occlusion
of nearby voxels. Therefore, we explicitly add a constrain to clear
these near-surface voxels.

𝑉x = 𝑉x (1 + �̃�𝑒 ), x ∈ {c, 𝛼,w, 𝜆, ŝ} (3)

Unlike Lighthouse [Srinivasan et al. 2020], which uses a heavy-
weight multi-scale network that requires 16G GPU memory for train-
ing, we make our 3D CNN network much more light-weight so that it
can be trained on a 1080Ti GPU. Three design choices are specifically
made. First, we set the number of voxels to be only one fourth of that
of Lighthouse, as detailed in Section 4.3. While this will cause more
blurry predictions, we solve it by introducing a cheap 2D blending
module, which will be discussed later. Further, as shown in Figure 5,
we keep only two connections 𝑉𝑓0 and 𝑉𝑓1 for our encoder-decoder
architecture, which connect only the first and the last layers from the
encoder to the decoder. For single image inputs, this not only allows
us to keep reasonable details but also can reduce the GPU memory
consumption by 30% compared to a standard U-net. For video inputs,
we have only two levels of features to be updated by RNNs, which
greatly reduces the computational cost for both training and testing.
Finally, as shown in Figure 5, in our 3D decoder, the branches to
output the spherical Gaussian volumes 𝑉w, 𝑉ŝ, 𝑉𝜆 and the weight
volume 𝑉𝑚 share features with the branches to output 𝑉c and 𝑉𝛼 .
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Therefore, the computational overhead to have the extra outputs is
very small compared to that of RGB𝛼 volume.

Blending network for detailed environment maps. A high-resolution
detailed environment map is necessary to render photorealistic reflec-
tion when we insert a highly glossy object into the scene. However, to
directly generate such an environment map through volume ray trac-
ing, we need to either reconstruct a high-resolution volume [Wang
et al. 2021] or a multi-scale volume [Srinivasan et al. 2020] by allo-
cating denser voxels in the camera frustum, where the virtual object
will be inserted. Both still lead to high computational cost. On the
contrary, we solve this issue in a simple but effective hybrid manner.
Given the depth map 𝐷 , we build a partial mesh of the indoor scene
by first projecting pixels into 3D space and then connecting adjacent
pixels. We then texture the partial mesh with the input image and
render a detailed LDR partial environment map efficiently with a ray
tracer. This detailed LDR partial environment map complements the
predicted HDR environment map but directly blending them together
can cause the loss of HDR lighting and edge artifacts. Therefore, we
train a light-weight 2D blending network that can output a blend-
ing weight. Formally, let ¤𝐿 be the HDR complete environment map
rendered from SGLV. With some abuse of notation, let �̃� be the de-
tailed LDR partial environment maps and �̃�𝑀 be the binary mask
indicating the visible regions, both rendered from the partial mesh.
Our blending network is defined as

𝐹0, 𝐹1 = BlendEncoder( ¤𝐿, �̃�, �̃�𝑀 , 1 − �̃�𝑀 )
𝐿𝑀 = BlendDecoder(𝐹0, 𝐹1)
𝐿 = ¤𝐿(1 − 𝐿𝑀 ) + �̃�𝐿𝑀

where 𝐹0 and 𝐹1 are two 2D feature maps connecting encoder and
decoder. 𝐿𝑀 is a single channel blending weight in the range [0, 1].
Similar to our 3D encoder-decoder, our 2D blending encoder-decoder
also only keeps 2 connections to reduce the computational cost,
especially when the input is a video sequence. Figure 6 compares the
environment map predictions directly rendered from SGLV and from
our blending network, which clearly shows the improved details and
more realistic reflection when using it to render mirror sphere. While
our blending model can only recover details of visible surfaces of
the scene, we argue that hallucinating details of invisible surfaces
is a too challenging problem as prior methods using larger volume
trained with adversarial loss cannot handle this issue satisfactorily
either. Figure 14 and 15 further compare our lighting prediction with
[Srinivasan et al. 2020]. We observe that on both synthetic and real
data, our method achieves higher or similar level of details for visible
parts of the scenes but with much less cost. For invisible parts, our
method can better recover the overall color of reflection and most
importantly the HDR light sources, leading to much more realistic
object insertion results with both mirror and glossy materials.

Monte Carlo in-network rendering layer. Since our eventual goal
is to build high-quality AR applications such as virtual object in-
sertion, we introduce a Monte Carlo in-network rendering layer to
directly optimize the network for this purpose. Our rendering layer
takes an HDR environment map and renders a virtual glossy sphere
facing the camera. The reason we render a glossy sphere instead of a

diffuse one is that the former can reflect specular highlights, provid-
ing a good cue for the network to recover the high-frequency direc-
tional lighting. In practice, we use the microfacet BRDF model pro-
posed in [Karis 2013], with its diffuse albedo set to be (0.8, 0.8, 0.8)
and roughness to be 0.2. During training, we render two spheres us-
ing predicted and ground truth lighting and compare the two spheres
to compute a rendering loss, as shown in Eq. (5).

A similar rendering layer has also been used in the prior work [Li
et al. 2020a] for indoor lighting estimation. However, their rendering
layer integrates the incoming radiance by uniformly sampling the
𝜃 -𝜙 space, which is not optimal and can cause aliasing artifacts. On
the contrary, our rendering layer samples the hemisphere through im-
portance sampling according to the microfacet BRDF model, which
leads to less noise and more realistic specular highlights. Let 𝑅 be
the rendered image, Ω be the set of directions sampled according to
the microfacet BRDF and 𝑃 (·) be the sampling probability. We have

𝑅p =
∑︁
l̂∈Ωp

F(l̂, n̂p, v̂p)𝐿l̂
Pp (l̂)

,

where F(·) is the microfacet BRDF. n̂p and v̂p are the normal and
view direction for pixel p. Figure 7 compares the rendered images
using the two sampling strategies on the Cornell box scene. With the
same number of samples, uniform sampling results in aliasing arti-
facts, while our importance sampling can render smooth appearance.

Loss functions. We use two loss functions for single view indoor
lighting estimation: a per-pixel lighting loss and a rendering loss.
The per-pixel lighting loss is defined as the log 𝐿2 loss between our
predicted HDR environment maps and the ground truth, located at
three randomly sampled positions inside the camera frustum.

L𝐿2 =
∑︁
{𝐿,�̄�}

(
log(𝐿 + 1) − log(𝐿 + 1)

)2
, (4)

where 𝐿 is a ground truth HDR environment map. As for the rendering
loss, we clamp the images 𝑅 rendered with our lighting prediction and
the ground truth to the range [0, 1], then compute their 𝐿2 distance:

L𝑅 =
∑︁
{𝑅,𝑅}

(
min(𝑅, 1) − min(𝑅, 1)

)2
, (5)

where 𝑅 is glossy sphere rendered with a ground truth HDR environ-
ment map. The reason for clamping is that in practice, most devices
only have LDR displays. Therefore, over-penalizing the HDR pixels
may not improve AR applications but can cause unstable training.
Note that regardless of the clamping, the lighting we recover is HDR.
The final loss function is a linear combination of the 2 loss functions.

Lsingle = L𝐿2 + 𝜖𝑅L𝑅, (6)

where 𝜖𝑅 is set to be 0.3 in our experiments. Note that we do not
use adversarial loss to hallucinate the details of the unseen parts
of the scene. We find that the hallucinated details may not create
more realistic reflection in virtual object insertion and may cause
temporally inconsistent lighting prediction, as shown in experiments.
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Fig. 6. Comparison of lighting prediction with and without the blending module on mirror sphere insertion. Our blending module adds significantly
amount of details to render photorealistic reflection, while keeping the computational overhead significantly lower than prior methods [Srinivasan
et al. 2020; Wang et al. 2021].

Fig. 7. Comparisons between rendering layers that uniformly samples
the 𝜃 -𝜙 space and that does importance sampling according to the
microfacet BRDF. From left to right: the cbox scene with a inserted
glossy sphere, the inserted glossy sphere rendered by a rendering
layer using uniform sampling, as in [Li et al. 2020a], and importance
sampling.

w/o rendering loss

with rendering loss

Fig. 8. Comparison of indoor lighting estimation with and without
rendering loss on a real example. Rendering loss encourages the
network to better recover HDR light sources.

4.2 Temporally consistent indoor lighting prediction
We now extend our network to utilize video inputs for improved
lighting prediction while maintaining temporal consistency. More
specifically, our lighting prediction must be stable to avoid obvious

Fig. 9. Comparison of blending models with and without depth
panorama input {𝐿𝑖

𝐷
}. Without depth input, the blending network can-

not infer that the nearby white table and sofa is closer to the mirror
sphere and therefore will occlude the surfaces further away seen in
the later frames. Please click the figure to see the animation.

flickering artifacts across frames, but as the camera motion accumu-
lates, our network should gradually improve the lighting prediction
quality based on new input frames. Intuitively, lighting prediction
may be improved using new input frames in two aspects. First, as new
inputs cover a larger region, the network can recover more details
for this region, which can help render more realistic reflections on
mirror or highly glossy surfaces. Second, even for a region that has
never been seen, more inputs may still allow the network to reason
about the invisible part of the scene using global illumination effects,
including shadows, highlights, and color bleeding, which may benefit
the reconstruction of important invisible light sources.

3D RNN for temporally consistent SGLV reconstruction. A naïve
method to handle the video sequence would be to fuse the initial
volumes and send them to the 3D encoder-decoder network. However,
this method offers no explicit smoothness constraint and may suffer
from inconsistent depth prediction across different views, causing
blurry or flickering lighting prediction. Hence, we train RNNs to
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Fig. 10. Comparison between our single-view lighting prediction from each individual frame and our RNN-based video lighting prediction. We
observe that our RNN-based framework can effectively accumulate observation from multiple frames to predict HDR environment maps with more
detailed reflection and more high-frequency lighting, while keeping the transition smooth. Note that even though the input depth maps are not fully
temporal consistent, as shown in the detailed reflection in our single-view prediction, our framework still generates temporally consistent lighting
prediction. Please click the figure to see the animation.

update our lighting prediction. Since our 3D encoder-decoder has
only two skip connections, we only use two 3D gated recurrent unit
(GRU) networks [Cho et al. 2014] SGGRU0 and SGGRU1. Similar
network architectures are used to update 3D feature volumes in [Choy
et al. 2016] for 3D reconstruction and [Sitzmann et al. 2019] for view
synthesis. Let 𝑉 𝑖 represent the volumes for frame 𝑖, we will have

𝑉 𝑖
𝑓0
,𝑉 𝑖
𝑓1

= SGEncoder(�̃� 𝑖c , �̃� 𝑖𝛼 , �̃� 𝑖𝑒 ) (7)

𝑉 𝑖
ℎ0

= SGGRU0 (𝑉 𝑖−1
ℎ0

,𝑉 𝑖
𝑓0
) (8)

𝑉 𝑖
ℎ1

= SGGRU1 (𝑉 𝑖−1
ℎ1

,𝑉 𝑖
𝑓1
) (9)

where 𝑉ℎ0 and 𝑉ℎ1 are hidden states for SGGRU0 and SGGRU1,
which are sent to the decoder.

𝑉 𝑖c ,𝑉
𝑖
𝛼 ,𝑉

𝑖
w,𝑉

𝑖
𝜆
,𝑉 𝑖ŝ ,𝑉

𝑖
𝑢 = SGDecoder(𝑉 𝑖

ℎ0
,𝑉 𝑖
ℎ1
) (10)

where 𝑉𝑢 is a single channel update volume to merge the prediction
from the current frame with the prediction from the prior frame. Our
final SGLV prediction for frame 𝑖 is computed as

𝑉 𝑖x = 𝑉 𝑖x (1 −𝑉 𝑖𝑢 ) +𝑉 𝑖𝑢𝑉 𝑖−1
x (11)

x ∈ {c, 𝛼,w, ŝ, 𝜆}, (12)

For the first frame with 𝑖 = 0, we directly use the 3D encoder-decoder
trained for single image lighting prediction to reconstruct SGLV and
the intermediate feature volumes 𝑉 0

𝑓0
and 𝑉 0

𝑓1
.

2D RNN for depth-aware blending. Similarly, to train the blending
network to handle video inputs, we use two 2D GRU networks
BlendGRU0 and BlendGRU1 to update the intermediate feature maps
𝐹 𝑖0 and 𝐹 𝑖1. However, in contrast to our single view blending network,
our video blending network has to be depth-ware to reason about
occlusion. Figure 9 shows an example where the white table and the
right sofa are close to the inserted mirror sphere but are not seen in
later frames. The blending module, therefore, needs to "memorize"
the occlusion without updating the detailed reflection from surfaces
that are further away, which is only possible when provided with
depth information.

To make our 2D RNN blending network depth-aware, we further
render a partial depth panorama �̃�𝑖

𝐷
using the partial mesh created

from the depth map 𝐷𝑖 . In addition, we introduce �̂�𝑖−1
𝐷

, which we
define as the accumulated partial depth panorama from frames 0 to
𝑖−1 as shown in (17). By comparing the two partial depth panoramas
�̃�𝑖
𝐷

and �̂�𝑖−1
𝐷

, we hope the blending network can learn to figure out
the occlusion order of different regions. The encoder of our video
blending network is defined as

𝐹 𝑖0, 𝐹
𝑖
1 = BlendEncoder(𝐿𝑖−1, ¤𝐿𝑖 , �̃�𝑖 , �̃�𝑖𝑀 , 1 − �̃�𝑖𝑀 , �̃�𝑖𝐷 , �̂�

𝑖−1
𝐷 ) (13)

where 𝐿𝑖−1 is the blended final HDR environment map predicted
from the last frame and �̃�𝑖

𝑀
is the binary mask indicating visible

regions for frame 𝑖. The output feature maps 𝐹0 and 𝐹1 are then
updated by two 2D GRU networks, as shown below.

𝐻 𝑖0 = BlendGRU0 (𝐻 𝑖−1
0 , 𝐹 𝑖0)

𝐻 𝑖1 = BlendGRU1 (𝐻 𝑖−1
1 , 𝐹 𝑖1)

The updated 𝐻0 and 𝐻1 are sent to the decoder to predict the blending
weight 𝐿𝑖

𝑀
,

𝐿𝑖𝑀 = BlendDecoder(𝐻 𝑖0, 𝐻
𝑖
1), (14)

which is used to blend the detailed partial environment map �̃�𝑖 into
our final HDR environment map prediction 𝐿𝑖 as shown in (16). To
make our blending model robust to slight depth flickering, we adopt
a conservative strategy by keeping the observed detailed reflection
unchanged unless the newly visible surfaces is significantly closer to
the camera, causing new occlusion.

𝐿𝑖𝑀 = max(𝐿𝑖𝑀 − 1(�̂�𝑖−1
𝐷 − �̃�𝑖𝐷 < 0.25), 0) (15)

where 1(·) is an indicating function.
Further, since the blending network is lightweight, we only use

it to update the visible regions of the environment map, which is a
relatively easier task. For the invisible regions, we directly use the ¤𝐿𝑖
rendered from SGLV as the final prediction. To memorize the regions
that have been seen in the past frames, we introduce the accumulated
blending weight �̂�𝑖−1

𝑀
, which is the summation of blending weight
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from frame 0 to 𝑖−1 as shown in (18). Our environment map updating
process can be written as

𝐿𝑖 = 𝐿𝑖𝑀 �̃�𝑖 + (1 − 𝐿𝑖𝑀 )
(
(1 − �̂�𝑖−1

𝑀 ) ¤𝐿𝑖 + �̂�𝑖−1
𝑀 𝐿𝑖−1

)
(16)

Finally, we update the accumulated partial depth panorama �̂�𝑖
𝐷

and
the accumulated blending weight �̂�𝑖

𝑀
.

�̂�𝑖𝐷 = 𝐿𝑖𝑀 �̃�𝑖𝐷 + (1 − 𝐿𝑖𝑀 )�̂�𝑖−1
𝐷 (17)

�̂�𝑖𝑀 = min(�̂�𝑖−1
𝑀 + 𝐿𝑖𝑀 , 1) (18)

An alternative way to accumulate details of visible surfaces is
running multi-view stereo methods [Schönberger et al. 2016] to
reconstruct a mesh from a video sequence. However, this process
may take several minutes to reconstruct the mesh while our current
simple blending method can run in real-time, as shown in Table 4,
which is more suitable for building a mobile AR application with
limited computational resources.

Loss functions. To train our network for handling video inputs, we
keep the per-pixel lighting loss L𝐿2 and the rendering loss L𝑅 un-
changed but add a new smoothness loss L𝑠𝑚 to enhance the temporal
consistency. We define the smoothness loss to be the log 𝐿2 distance
between the predicted HDR environment maps from consecutive
frames.

L𝑠𝑚 =
∑︁

{𝐿𝑖 ,𝐿𝑖−1 }

(
log(𝐿𝑖 + 1) − log(𝐿𝑖−1 + 1)

)2
.

The final loss function is

L𝑣𝑖𝑑𝑒𝑜 = L𝐿2 + 𝜖𝑅L𝑅 + 𝜖𝑠𝑚L𝑠𝑚,
where 𝜖𝑅 = 0.3 as before and 𝜖𝑠𝑚 is set to be 0.01.

Figure 10 compares our single view lighting prediction framework
and our RNN-based video lighting prediction framework. For both
frameworks in this example, we use depth maps from ARKit as inputs.
We notice that our RNN-based framework can effectively accumulate
the newly observed details from later frames while maintaining tem-
poral consistency. Even though the invisible light sources are never
seen in the whole video sequence, our framework manages to predict
sharper HDR light sources while keeping them at almost the same
location, leading to steadily sharper and more realistic shadows. On
the contrary, the single view framework predicts inconsistent lighting
across different frames, causing the reflection and shadows of the
inserted mirror sphere to jump across frames. In addition, we may
see that the detailed reflection of our single view lighting prediction
twists noticeably as we move our camera, which is caused by the
flickering of ARKit depth prediction. On the contrary, our depth-
aware RNN-based blending model is robust to such flickering and
can create stable detailed reflection across the whole video sequence.

4.3 Dataset creation and implementation details
Dataset creation. To train our framework, we augment the Open-

Rooms dataset [Li et al. 2020b], which is a large-scale, high-quality
synthetic indoor dataset, created with realistic materials and lighting,
and rendered using an OptiX-based path tracer. The original Open-
Rooms dataset already contains spatially varying, per-pixel HDR
environment maps densely sampled on the scene surface. However,
those HDR environment maps are of a too low resolution (16 × 32)

Range Resolution
x [-1.1𝐷max, 1.1𝐷max] 84
y [-0.8𝐷max, 0.8𝐷max] 60
z [-1.2𝐷max, 0.5𝐷max] 64

Table 2. Volume range and resolution in 𝑥 , 𝑦 and 𝑧 dimension. 𝐷max is
the maximum depth value in the first frame.

SGLV Blending Joint
Single View 7 2 2

Video 3 3 2
Table 3. The number of training epochs for each step.

Volume SGLV Volume Blend- 3D 2D
initialization prediction rendering ing RNN RNN

4.1 ms 25 ms 22 ms 5.2 ms 19 ms 2.1 ms
Table 4. Time consumption of every step of our framework. The total
time to process one frame is around 77 ms.

and none of them locates in the middle of the room. Therefore, we
randomly sample 3 positions inside each camera frustum of 120K im-
ages and render an HDR environment with a resolution of 120 × 240,
leading to 360K much higher resolution environment maps in total.

To create video sequences, we follow the two-body method used
in [McCormac et al. 2017; Li et al. 2018] to simulate smooth cam-
era trajectories. We render 37, 680 video sequences in total, each of
which contains 31 frames with a resolution of 240× 320. The average
camera distance and the rotation angle between consecutive frames
are 0.09m and 4.78◦, respectively. For each video sequence, we ran-
domly sample 3 positions in the camera frustum of the first frame
and render HDR environment maps at these positions as the ground
truth supervision.

Volume configuration. We decide the location and orientation of
our volume based on the camera position, with the camera center
being the original point, and the right, up, backward directions of the
image plane being the 𝑥 , 𝑦, 𝑧 axes. We decide the size and resolution
of our volume based on the maximum depth value 𝐷max in the depth
map 𝐷, as summarized in Table 2. We empirically find that this
configuration allows us to cover most light sources in our volume.
When the input is a video sequence, we build the volume based on
the first frame and fix it through the entire video sequence. Our total
number of voxels is only 25% of Lighthouse [Srinivasan et al. 2020]
and 15% of Wang et al. [Wang et al. 2021], which makes our model
much more memory efficient.

Training details. We use the Adam optimizer [Kingma and Ba
2014] with a learning rate of 10−4 and batch size 1 to train all our
networks. We first train the networks for single view indoor lighting
prediction and use the trained models as the initialization for handling
video inputs. We find that this strategy allows us to significantly
reduce the total training time. For both single view and video cases,
we train the 3D encoder-decoder for SGLV reconstruction first, then
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SGLV RGB𝛼 Pred.
Init. ¤𝐿 Blended 𝐿 Blended 𝐿 depth

Env L𝐿2 (10−1) 9.52 9.02 9.05 10.4
Render L𝑅 (10−2) 2.92 2.78 2.88 3.23

Table 5. Quantitative results of single view lighting prediction on our
synthetic dataset. We observe that our hybrid framework can greatly
improve accuracy compared to the pure volume-based framework. Our
SGLV representation can better model HDR light sources compared to
RGB𝛼 volume, which leads to smaller rendering loss. We include our
lighting prediction accuracy with predicted depth in the last column.

fix it to train the blending network, and finally, jointly fine-tune the
two networks together. The number of iterations for each step is
summarized in Table 3.

To test the model performances with imperfect depth inputs, we
train two versions of our lighting prediction models, one with the
ground truth depth maps and the other with predicted depth maps. For
single view lighting prediction, we choose 3D-ken-burn by Niklaus
et al. [Niklaus et al. 2019] for depth prediction because of its good
performances on indoor scene datasets [Silberman et al. 2012]. For
video lighting prediction, we choose Neural RGBD by Liu et al. [Liu
et al. 2019] for depth prediction. We fine-tune both models on our
synthetic dataset. Some more recent works demonstrate that the trans-
former architecture can achieve more accurate depth prediction [Luo
et al. 2020; Zhang et al. 2021]. Other works propose to predict tem-
porally consistent depth maps by fine-tuning a pre-trained network
for every video sequence. While these new methods may improve
lighting prediction quality, it is not our focus to comprehensively
explore all different depth prediction methods.

Real data. For all real experiments on single image lighting pre-
diction, we use depth prediction from Niklaus et al. [Niklaus et al.
2019] to demonstrate that we can handle any legacy photos. For video
lighting prediction, we use camera poses and depth maps directly
obtained from iPad ARkit. While the depth maps from ARKit may
not be completely temporally consistent, we observe that our method
is robust to such imperfect depth inputs. We sample 30 frames from
around 10 seconds video sequences as the input to our network. Once
we get the lighting prediction of the 30 frames, we use simple bilinear
interpolation to generate the lighting prediction for every frame in
the whole video sequence and render our object insertion results.

Time consumption. We test the time consumption of our frame-
work on an Nvidia 2080 Ti GPU. The results are summarized in Table
4. We observe that the majority of time is spent on reconstructing
SGLV and using volume ray tracing to render HDR environment
maps. The total time consumption for one frame is around 77 ms,
which means our method can run at 13 fps.

5 EXPERIMENTS
We first present our results of spatially consistent single view lighting
prediction and then our results of spatiotemporally consistent video
lighting prediction, on both synthetic and real data.

Zoomed-in object insertion and envmaps

Mirror Glossy Environment map

Ours with GT depth

Ground truth

Ours with GT depth

Ground truth

Ours with Pred. depth

Our prediction with 
predicted depth

Fig. 11. Single view lighting prediction on our synthetic dataset. Our
method generates high-quality lighting prediction with detailed reflec-
tion as well as HDR visible and invisible light sources, which can
support realistic rendering of both glossy and mirror materials. Our
lighting predictions using predicted depth maps is comparable to those
using ground truth depth maps, with only slight distortion of the reflec-
tion and blur of the HDR light sources.

Glossy bunnies Mirror spheres
[Gardner et al. 2017] 61.7% 78.2%
[Garon et al. 2019] 59.9% 77.6%

[Li et al. 2020a] 46.3% 77.1%
[Wang et al. 2021] 66.6% 66.6%

Table 6. User study of object insertion on the Garon et al. [Garon et al.
2019] dataset. For all 20 indoor scenes in the dataset, we place mirror
spheres and glossy bunnies at multiple locations inside the scenes and
render them with predicted HDR environment maps. Given randomly
selected pairs of object insertion results, users will be asked to judge
which result is more realistic. Each user will evaluate 20 pairs and 200
users recruited through Amazon Turk joined this study. We report the
percentage of users who consider our method to be more realistic.
For mirror sphere insertion, our results are much better compared to
prior state-of-the-arts, as 60% to 80% users agree that they are more
realistic. For glossy bunny insertion, our results are only slightly worse
than Li et al. [Li et al. 2020a] but better than other works.

5.1 Singe image indoor lighting prediction
Synthetic data. Quantitative and qualitative results of single view

lighting prediction on our synthetic dataset are summarized in Figure
11 and Table 5. From Figure 11, we observe that our method can
recover the details of the reflection from visible surfaces as well as
the HDR light sources, either visible or invisible. As for the invisible
reflection of the scene, our method cannot recover the details but can
infer correct color distribution and also maintain a smooth, natural
transition between visible and invisible regions. Using our lighting
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Garon et al. Li et al. Ours Garon et al. Li et al. Ours

Mirror sphere insertion Glossy bunny insertion

GTWang et al. Wang et al. GT

Fig. 12. Comparison of single view lighting prediction for object insertion on Garon et al. dataset [Garon et al. 2019]. Our framework can recover
detailed reflection as well as visible and invisible HDR light sources, with various light transport effects such as directional lighting, global illumination,
and occlusion being correctly modeled, which leads to realistic rendering for both mirror and glossy objects at any given location in the scene.

Fig. 13. We demonstrate the spatial consistency of our lighting predic-
tion by placing moving glossy and mirror spheres into two real scenes.
Please click the figure to see the animation.

prediction, we can render both mirror and glossy spheres into the
scene with appearance closely matching the ground truths. From
Table 5, we observe that our hybrid framework with the blending
network can produce much more accurate lighting prediction, as also
shown in the real examples in Figure 6. In addition, we observe that
our SGLV representation has lower rendering loss of glossy sphere
compared to vanilla RGB𝛼 volume. This implies that our representa-
tion can better handle HDR lighting and directional lighting, which
is also shown in the real example in Figure 4.

Real data. We compare our method with prior works on Garon et
al. dataset [Garon et al. 2019], which is widely used for evaluating
indoor lighting. The dataset contains 20 images with lighting selected
at different locations in the scenes. We use HDR environment maps
predicted by different methods to render virtual mirror spheres and
glossy bunnies into the scenes, to compare the level of photorealism
of object insertion under different materials. Qualitative results are
summarized in Figure 12. We see that our method can recover both
detailed reflection and HDR light sources accurately, generating
realistic object insertion for both mirror and glossy materials, with

high-quality reflection, specular highlights, and shadows. It models
challenging visual effects effectively, such as global illumination,
occlusion, and directional lighting. For example, in the bottom-right
scene, the bunny under the table is much darker compared to the
bunny on the table due to the occlusion of light sources; in the top-
right scene, the bunny on the platform has realistic highlights and
shadows caused by sunlight coming through the window. In contrast,
a recent method [Wang et al. 2021] that uses a similar spherical
Gaussian volume as its lighting representation fails to reconstruct
realistic nearby reflection even though they use around 6.5 times more
voxels compared to our hybrid representation, as shown in the mirror
sphere insertion results. They also cannot recover HDR lighting as
well as our method, probably because their dataset lacks the direct
supervision from ground truth HDR environment maps. This causes
their glossy object insertion results to be darker than ground truth,
with blurry specular highlights and shadows. Prior state-of-the-art [Li
et al. 2020a] cannot recover the detailed reflection, leading to poor-
quality rendering for mirror spheres. It also cannot guarantee spatial
consistency. Earlier methods cannot recover high-frequency HDR
lighting [Garon et al. 2019] or spatially-varying lighting [Gardner
et al. 2017].

To evaluate the object insertion quality quantitatively, we conduct
a user study on Amazon Turk. For mirror sphere insertion and glossy
bunny insertion, we hire 200 Amazon Turkers respectively, present
them with 20 pairs of object insertion results, with each pair gener-
ated by two randomly selected methods, and ask them which one
looks more realistic. We report the percentage of people thinking
our results are more realistic in Table 6. The quantitative numbers
match our observation in Figure 12, which shows that our method
outperforms all prior state-of-the-art in mirror sphere insertion, in-
cluding the most recent volume-based lighting estimation method
[Wang et al. 2021], and is only slightly worse compared to [Li et al.
2020a] in glossy bunny insertion. However, our lighting estimation
framework is more general compared to [Li et al. 2020a], which can
only predict environment map at the surface with no guarantee of
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Fig. 14. Video lighting prediction on our synthetic dataset. Our method
can progressively add visible details while making the predicted light
source temporally consistent. Our rendered glossy and mirror spheres
are close to the ground truths. In contrast, Lighthouse [Srinivasan
et al. 2020] cannot recover invisible light sources or achieve temporal
consistency. Even with predicted depth, our method can still produce
higher quality, temporally consistent lighting prediction with only slight
blur and distortion. Please click the figure to see the animation.

spatial consistency while we can predict spatially-consistent lighting
at arbitrary locations.

In Figure 13, we demonstrate the spatial consistency of our lighting
estimation by moving virtual glossy and mirror spheres inside the
scene. The animation shows that the reflection, specular highlights
and shadows of the spheres are all consistent as we change their
locations.

5.2 Temporally consistent indoor lighting prediction
Synthetic data. Figure 14 shows qualitative results of video light-

ing prediction on our synthetic dataset. Our method manages to
produce high-quality HDR environment map prediction, which en-
ables realistic rendering of mirror and glossy spheres similar to the
ground truths. In comparison to single view lighting prediction, our
video lighting prediction includes much more details as our input
frames cover a larger region of the room. As shown by the animation
in Figure 14, our method manages to maintain reasonable temporal
consistency as it refines the lighting prediction with new inputs. In
the first example, our method memorizes both the invisible lamp on
the top and the window which cannot be seen in the last few frames,

Frame interval [1,8) [8,14) [14,20) [20,26) [26,31]

HDR env

Gt. depth 0.63 0.61 0.60 0.59 0.59
Pred. depth 0.85 0.80 0.78 0.77 0.77
No RNN 0.93 1.15 1.14 1.15 1.19

Simple Avg. 0.71 0.75 0.79 0.81 0.84
log 𝐿2 (10−1) Lighthouse 1.39 1.42 1.42 1.41 1.42

Frame interval [1,8) [8,14) [14,20) [20,26) [26,31]

LDR env

Gt. depth 2.5 2.4 2.3 2.3 2.2
Pred. depth 3.8 3.5 3.4 3.3 3.3
No RNN 4.4 6.1 6.0 6.2 6.6

Simple Avg. 3.2 3.5 3.8 4.0 4.2
𝐿2 (10−2) Lighthouse 6.7 6.9 7.0 7.0 7.0

Frame interval [1,8) [8,14) [14,20) [20,26) [26,30]

Smoothness

Gt. depth 1.38 0.74 0.58 0.52 0.49
Pred. depth 2.12 0.86 0.68 0.61 0.56
No RNN 12.1 6.3 6.1 6.0 6.0

Simple Avg. 0.76 0.41 0.35 0.34 0.33
log 𝐿2 (10−3) Lighthouse 3.85 2.38 2.27 2.19 2.16

Table 7. Quantitative comparisons of video lighting prediction on our
synthetic dataset. We divide our 31-frame video sequences equally
into five intervals and report the errors of each interval. The interval
with the lowest error is marked with bold font. All three metrics show
that with both ground truth and predicted depth maps as inputs, our
method can consistently improve lighting prediction accuracy as it
sees larger parts of scenes. On the contrary, prior state-of-the-art
[Srinivasan et al. 2020] predicts less accurate LDR environment maps
in the first few frames and cannot improve the prediction accuracy with
more inputs.

through the whole video. In the second example, our method keeps
the location of the invisible lamp unchanged and makes it sharper as
it looks around the room. We also show our video lighting prediction
with predicted depth in the second example, which presents more
blurry HDR light sources and slightly distorted details but still has
smooth inter-frame transition even though the depth inputs from
different frames may not be accurate or consistent. On the contrary,
prior state-of-the-art methods’ lighting prediction changes drastically
as we move the camera. Besides, it cannot recover invisible light
sources, which is very important for lighting estimation.

Our quantitative comparisons are summarized in Table 7. We com-
pare our method with prior volume-based lighting prediction method
Lighthouse [Srinivasan et al. 2020] and two baselines. In the first
baseline "No RNN", we remove the 2D and 3D GRU network mod-
ules and predict lighting independently from each input frame. In the
second baseline "Simple Avg.", we simply accumulate our indepen-
dent lighting prediction by computing their average. We report three
errors, the log 𝐿2 HDR environment map error L𝐿2 and smoothness
error L𝑠𝑚 are used to train our network. To make a fair comparison
with prior work [Srinivasan et al. 2020] that can only predict LDR
environment maps, we also report LDR environment map loss in the
second group where we clamp the lighting prediction to the range of
0 to 1 and then compute its 𝐿2 error from the ground truth. The quan-
titative comparisons show that our method can consistently reduce
the lighting prediction errors with new input frames, even with imper-
fect predicted depth maps. On the contrary, the prior volume-based
method predicts less accurate lighting as the camera drifts away. In
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Fig. 15. Comparisons of video lighting prediction and object insertion on real data captured by an iPad. Our method significantly outperforms prior
state-of-the-art [Srinivasan et al. 2020] to predict more temporally consistent lighting, more accurate HDR light sources and reflection, which allows
more realistic shadows and specular highlight in object insertion with different materials. Please click the figure to see the animation.

all three metrics, our method with ground truth or predicted depths
outperforms prior work by a large margin. Two simple baselines
cannot progressively improve lighting predictions with new input
frames either, which further demonstrates the effectiveness of our
RNN modules.

Real data. Figure 15 and Figure 16 show three examples of our
video lighting prediction on real data captured with an iPad. We
sample 10 frames of prediction and include the full video sequence
in the supplementary material. The depth maps and camera poses are

obtained from ARKit. We observe that even though our method is
trained on synthetic videos only, it generalizes well to real videos, as
it can still progressively improve the lighting prediction quality by
adding more details to the reflection from visible surfaces as well as
refining the HDR light sources and reflection from invisible surfaces.

More specifically, in the first example in 15, our method refines
the lighting prediction as a light source that is invisible in the first
few frames and, therefore, not correctly predicted, gradually emerges
in later frames. Our method successfully adds the new light sources
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Fig. 16. Another video lighting prediction example. Our method memorizes the visible lamp that only appears in the first few frames, leading to
consistent specular highlights and shadows across the whole video sequence. Please click the figure to see the animation.

as it shows up. Meanwhile, the other invisible light source, which
has been predicted correctly in the beginning, remains stable across
the video sequence. In the third example, our method predicts two
invisible light sources (a lamp on the top and a window on the left)
accurately from the first few frames and keeps refining them as more
inputs are available. Through this process, the shadows and highlights
on both the mirror spheres and the "knight" are reasonably stable.
In Figure 16, our method "memorizes" the visible light source that
only appears in the first half of the video. As a result, the shadows
and highlights are consistent across the whole video sequence. Note
that even though the depth maps from ARKit may flicker slightly,
as shown in Figure 10, our blending model is robust to such small
errors and generates stable details across all three video sequences.

In contrast, prior work Lighthouse [Srinivasan et al. 2020] cannot
predict temporally consistent lighting. More importantly, it cannot
utilize later frames to refine its predictions. Therefore, as the camera
drifts away, their predictions become worse. In addition, even for the
first few frames, we observe that Lighthouse can only recover the
reflection of visible surfaces. For invisible surfaces, it cannot predict
either light sources or a correct color distribution that allows a smooth
transition between visible and invisible reflection. On the contrary,
our lighting prediction is much more natural and realistic on real data,
mainly because our dataset (physically-based rendered OpenRooms
dataset), network architecture and loss functions (rendering loss) are
all physically motivated, causing our learning-based framework to
have better generalization ability.

6 CONCLUSION
Limitations and future work. Our current method requires camera

poses and depth maps as inputs. For single-view lighting prediction,

we can achieve state-of-the-art performances with depth prediction
from [Niklaus et al. 2019]. For video lighting prediction, our method
works well with the camera poses and low-resolution depth maps
captured by iPad Arkit. How to predict temporally consistent depth
maps is still an open problem [Luo et al. 2020; Zhang et al. 2021]
and even depth maps captured by ARKit flicker noticeably. However,
as shown in several real examples in Figure 1, Figure 10 and Figure
15, our method is robust to such flickering. In addition, if the input
video sequence is too long, the camera poses from ARKit will be
less accurate and cause errors in our lighting prediction. As higher
quality sensors become more and more accessible on mobile devices,
we suggest that these limitations may be less influential in the future.

In addition, our method may fail in the presence of highly glossy
or mirror materials. In Figure 10, we can see that the reflection
of highlight on the tablet gets blurred in our HDR environment
map prediction as the camera moves away. This is because as we
change our viewpoints, this highlight is no longer visible in later
frames (Frame 13, for example). This suggests that we need a holistic
framework to jointly reason about the geometry and materials of
indoor scenes to achieve more accurate lighting prediction.

Besides, our method cannot hallucinate detailed reflection from
invisible surfaces. We argue that this is a too challenging problem
and humans may not be very sensitive to these details. Prior method
[Srinivasan et al. 2020] tries to solve this problem by adding adver-
sarial loss. However, as shown in both synthetic and real examples in
Figure 14 and Figure 15, they only add random textures to the envi-
ronment map prediction without substantially improving its visual
quality. We also tried adversarial loss but observe that it deteriorates
our model’s generalization ability by adding weird colors in some
real cases. On the contrary, our current method generally can predict
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the overall color distribution of invisible reflection with smooth tran-
sition between visible and invisible regions, leading to more visually
convincing lighting prediction. How to synthesize realistic consistent
invisible details can be an interesting direction for future exploration.

Finally, our current method is designed for indoor scenes only and
will not generalize well to outdoor scenes. While our lighting rep-
resentation can model directional lighting, our training data contain
only indoor scene images. Moreover, the scales of outdoor scenes are
much larger than indoor scenes, which will require us to modify our
volume parameterization to handle scene structures that are far away
from the camera. In addition, our video lighting prediction method
can only handle static scenes but cannot handle dynamic scenes with
changing lighting or moving objects.

Summary. We present a physically-motivated deep learning-based
framework for spatiotemporally consistent HDR lighting prediction
at arbitrary locations of indoor scenes, which enables realistic ob-
ject insertion with different materials. Our method is the first that
can utilize video sequences to improve lighting prediction, while
explicitly considering temporal consistency as we progressively re-
fine the outputs. The key novelties of our framework include: (1) a
hybrid framework that can recover both visible details and HDR light
sources as well as guarantee spatial consistency and (2) an RNN-
based framework that can handle video sequences. Experiments show
that our framework is more general, as it can handle more diverse
inputs for different applications, and with comparable performances
to prior state-of-the-arts.
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