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The visual appearance of many materials is created by micro-scale de-
tails of their surface geometry. In this paper, we investigate a new approach
to capturing the appearance of metal surfaces without reflectance measure-
ments, by deriving microfacet distributions directly from measured surface
topography. Modern profilometers are capable of measuring surfaces with
sub-wavelength resolution at increasingly rapid rates. We consider both
wave- and geometric-optics methods for predicting BRDFs of measured
surfaces and compare the results to optical measurements from a goniore-
flectometer for five rough metal samples. Surface measurements are also
used to predict spatial variation, or texture, which is especially important
for the appearance of our anisotropic brushed metal samples.

Profilometer-based BRDF acquisition offers many potential advan-
tages over traditional techniques, including speed and easy handling of
anisotropic, highly directional materials. We also introduce a new gener-
alized normal distribution function, the ellipsoidal NDF, to compactly rep-
resent non-symmetric features in our measured data and texture synthesis.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and tex-
ture

General Terms: Appearance modeling and rendering, Profilometer micro-
geometry measurement

Additional Key Words and Phrases: Surface reflectance, Microfacet models,
Kirchhoff scattering, Spatially-variant anisotropic BRDF
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1. INTRODUCTION

Surface reflectance models based on the microfacet theory [Blinn
1977; Cook and Torrance 1982; Walter et al. 2007] have become
predominant in computer graphics because they are simple, reason-
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ably general, and they have consistently proven to be an excellent fit
for real materials [Torrance and Sparrow 1967; Ngan et al. 2005a;
Low et al. 2012]. It has often been observed that the assumptions of
microfacet theory—namely that the surface is smooth at the wave-
length scale—are frequently violated, yet the models nevertheless
fit measurements well.

The way a surface reflects light is represented by its bidirectional
reflectance distribution function (BRDF). The shape of a micro-
facet BRDF is primarily determined by the distribution of micro-
scale surface normals, which is represented as a normal distribution
function (NDF). Traditionally, simple distributions based on statis-
tical assumptions about the surface, such as the Beckmann distri-
bution, are used so that the parameters can be obtained by fitting to
a relatively sparse set of BRDF measurements.

The limited expressiveness of the traditional distributions has led
more recently to methods that make denser BRDF measurements,
and use more general models, such as tabulations and mixture mod-
els, to represent the NDF. This gives greater expressive power; but
it requires dense angular measurement, leading to slow capture pro-
cesses or assumptions of large-area surface homogeneity. For spa-
tially varying surfaces, the problem is much more difficult, and it is
generally infeasible to achieve high resolution NDF acquisition.

This paper explores a different avenue for capturing normal dis-
tributions: obtaining them by measuring the microscopic surface
topography directly. Using a commercial profilometer, a standard
laboratory instrument that uses white-light interferometry through a
microscope to measure height fields, we measure surface heights at
110nm resolution in roughly 7 seconds per 70x55um region (Fig-
ure 1 (b)). From these measurements we predict the BRDF of the
surface, avoiding the need for scattering measurements.

We investigate two ways to predict BRDFs from surface height
data. Microfacet theory is based on geometric optics and derives
the BRDF from the geometric surface normals. However, it overes-
timates the effect of wavelength-scale roughness, and we find that it
must be combined with spatial filtering for good results. A second
approach, uses the wave optics based, scalar Kirchhoff diffraction
theory, which makes weaker smoothness assumptions and treats
small detail in a more rigorous way, without the need for filtering.

The resulting distributions, from both the microfacet and Kirch-
hoff approaches, are very detailed and we are easily able to cal-
culate them for very small areas of surface—two things that are
very difficult to do at once with conventional optical measurements.
Despite their strong theoretical differences, we find both methods
produce similar BRDF predictions for our test surfaces. We further
present validation experiments that show close agreement between
the BRDFs predicted from the surface microgeometry and mea-
surements from a gonioreflectometer.

Most of our samples are highly anisotropic, and the normal dis-
tributions for small regions often exhibit noticeable skew with the
maximal direction shifted away from the average surface normal.
Existing parametric NDF models assume mirror symmetry and
cannot represent this effect. Thus we also propose the new ellip-
soid NDF model, which supports anisotropy and skew as a gener-
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(a) Brushed stainless photographs (b) Measured surface microgeometry

alization of the widely used GGX/Trowbridge-Reitz NDF [Walter
et al. 2007; Trowbridge and Reitz 1975], and which can be effi-
ciently evaluated and importance sampled. Using this new NDF,
we explore an approach to statistically modeling spatial variation
by computing ellipsoid NDF parameters for a small set of con-
tiguous patches, and then synthesizing much larger textures with
similar statistics.

This paper opens up a new avenue for capturing the appearance
of surfaces with detailed normal distributions and spatial variation.
It has significant advantages compared to the usual optical meth-
ods: it can achieve very high resolution in both space and angle,
with relatively short measurement times and off-the-shelf instru-
mentation. Our current method is well suited to opaque single layer
materials, such as rough metals, however due to the limitations of
the profilometer and theories we utilize, it does not handle mate-
rials with multiple layers, or with strong multiple or sub-surface
scattering. While surface geometry alone is insufficient to predict
appearance those materials, such as paint or plastic, nevertheless
surfaces form an important part of most materials. We hope our
work also contributes to a better understanding of real world sur-
faces and how they affect light, to assist the future development of
measurements strategies and models for a wider range of materials.

Some contributions of this paper include:

(1) Propose a new approach to material appearance capture based
on surface microgeometry measurement with off-the-shelf
equipment, that has unique strengths compared with conven-
tional optical BRDF measurement.

(2) Demonstrate application of microfacet and Kirchhoff theory
for measured rough surfaces including developing filtering
modification for microfacet and formulation of Kirchhoff in
terms of new NDF-analogous term Dg.

(3) Validate predictions of both theories against gonioreflectome-
ter measurements for a set of challenging rough, anisotropic
metal surfaces.

(4) New parametric NDF model that supports both anisotropy and
skew, called the ellipsoid NDF.

(5) Simple texture synthesis method, based on separable assump-
tion, that can extrapolate visually important NDF textures from
a measurements of small regions.

2. RELATED WORK

Microfacet BRDF. Microfacet BRDFs [Torrance and Sparrow
1967; Blinn 1977; Cook and Torrance 1982; Walter et al. 2007]

(c) Predicted anisotropic BRDF

(d) Spatially variant BRDF

Fig. 1. We present a method to predict the appearance of complex surfaces, such as this stainless steel #4 sample, from its micro-scale geometry. Commercial
profilometers can rapidly measure surfaces with sub-wavelength resolution, and we develop and validate methods to predict BRDFs from the surface data. The
method can predict both average BRDFs and characteristic textures, or spatial variations, that are visually important for our example materials.

are based on a geometric optics model of how light reflects from
a rough surface, and have been shown to provide a good match to
measured BRDF data for many real materials [Ngan et al. 2005b].
The surface is assumed to act as complicated curved mirror, or
equivalently as a collection of many small flat reflective facets
(microfacets). The resulting BRDF depends on three components:
the microfacet Normal Distribution Function (NDF) term, a Fres-
nel term based on the material’s complex index of refraction, and
a shadowing-masking term to ensure energy conservation. The
NDF term is the most important in determining the pattern of re-
flected light, and many different parametric forms have been pro-
posed. The Beckmann distribution, based on isotropic Gaussian
random surfaces, is often used [Cook and Torrance 1982]. To model
anisotropic materials, Ward [1992] used the anisotropic Beckmann
distribution while omitting the Fresnel and shadowing/masking
terms for simplicity. Ashikhmin and Shirley [2000] introduced an
anisotropic reflection model using a Phong microfacet distribution.
Walter et al. [2007] showed that the Beckmann and Phong distri-
butions are very similar and introduced the GGX distribution to
better fit a measured BRDF dataset. GGX is mathematically iden-
tical to the NDF proposed by Trowbridge and Reitz [1975] and an
anisotropic extension was proposed by Burley [2012]. This paper
introduces a new extension of the GGX NDF model that is better
suited to modeling spatial variation in anisotropic materials. While
convenient for rendering, parametric forms can be limiting and thus
some methods have used more general representations such as tab-
ulated NDFs [Ashikhmin et al. 2000; Wang et al. 2008].

By using geometric optics, microfacet theory assumes that
diffraction effects can be safely neglected. This is only a safe as-
sumption if the micro-surfaces are locally flat compared to the
wavelength. In other words, the surface should not contain any
roughness at scales near the wavelengths of visible light. Real sur-
faces often violate this assumption. Lacking access to actual surface
microgeometry, prior microfacet work has not addressed this issue.

Kirchhoff Scattering. Another approach for modeling BRDFs
is to use Kirchhoff theory [Beckmann and Spizzichino 1968],
which is based on wave optics and can correctly predict many
diffraction effects. Kajiya [1985] suggested using Kirchhoff the-
ory to model anisotropic surface appearance but did not test against
any measured data. He et al. [1991] derived a BRDF model for a
broad class of Gaussian random surfaces using vector Kirchhoff
theory. Stam [1999] used scalar Kirchhoff theory to derive BRDF
models for periodic and Gaussian random surfaces based on the
Fourier transform of their height correlation functions. His solu-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Predicting Appearance from Measured Microgeometry of Metal Surfaces e 3

tion for periodic structures was improved in [Dhillon et al. 2014] to
better reproduce diffraction-grating-like effects seen in measured
reptile skins. Levin et al. [2013] used Kirchhoff theory to predict
the BRDFs of a specific class of surfaces that can be manufactured
using photolithography. Our measured microgeometries are irreg-
ular and not likely to fit into any of these prior categories, so we
have chosen to numerically estimate the scalar Kirchhoff integrals
directly rather than using one of these prior approximate solutions.
Cuypers et al. [2012] extend the definition of a BRDF using Wigner
distributions which can predict macroscopic near-field diffraction
effects, but that lies beyond the scope of this paper and we will use
the standard BRDF definition.

Some prior work has compared measured BRDFs and microge-
ometry statistics for particular kinds of surfaces to test Kirchhoff-
based predictions. For example, Marx and Vorburger [1990] and
Li and Torrance [2005] tested surfaces specially prepared to be ap-
proximately 1D or isotropic gaussian respectively, and found good
agreement with Kirchhoff theory. Another study [Schroder et al.
2011] tested isotropic surfaces with varying roughness (though
with lower roughness than our examples) against a more advanced
Kirchhoff-based model, called Generalized-Harvey-Shack theory,
and found good agreement. They extracted a statistical model of
their surfaces using a combination of optical profilometer and
atomic force microscopy measurements. In contrast to this prior
work, we use the measured microgeometry directly rather than as-
suming any particular statistical model for the surfaces, and demon-
strate that our method works even for highly anisotropic surfaces.

Spatially Varying BRDF. To capture important spatial varia-
tion, many methods have been proposed for capturing densely sam-
pled BRDF measurements across surfaces. Dana et al. [1999] pro-
posed to use a spatial gonioreflectometer to directly measure spa-
tially varying BRDFs and bidirectional texture functions (BTFs) of
real surface materials. By measuring many pixels at once, camera-
based acquisition systems can be used to measure SVBRDFs [Gu
et al. 2006], BTFs [Dana 2001; Miiller et al. 2005; Han and Perlin
2003], and reflectance fields [Garg et al. 2006] with dense sampling
of view and light directions over the hemisphere. Because of the
need to sample a 6D space, all these methods require complicated
and specialized setups, and they either require time-consuming ac-
quisitions or achieve low angular resolution. In comparison, we
measure NDFs directly, avoiding many of the difficulties and limi-
tations of radiometric measurements and achieving very high reso-
lution in both space and angle, though not over large surface areas.

Data-driven BRDF Fitting. To limit the need for high angu-
lar resolution, many methods fit parametric models to their spa-
tially varying BRDF measurements. Gardner et al. [2003] used a
linear light source to scan a surface and fit an isotropic Ward model
at each pixel in a fixed view. Lensch et al. [2003] separate sur-
faces into different materials and use Lafortune BRDF [Lafortune
et al. 1997] fit to each material cluster as a basis in which to repre-
sent spatial variation. Similarly, Goldman et al. [2005] use a basis
of isotropic Ward BDRFs to represent SVBRDFs. These methods
capture detailed spatial variation, but their low angular resolution
requires assuming that particular low-parameter BRDF models are
sufficient. Using device setup similar to Gardner et al., Wang et
al. [2008] capture a denser 2D slice of the 4D BRDF at each pixel
in a fixed view, then combine sparse data from many pixels to esti-
mate tabulated NDFs. Their NDFs are much lower resolution than
with our method, and their merging of NDFs relies on rotational
symmetries that our data shows do not always hold.

Dong et al. [2010] takes another approach to leveraging the lim-
ited variation of BRDFs on a sample. They assume that reflectance
over a given material sample forms a low-dimensional manifold,

allowing a two-phase process in which isolated measurements with
relatively high angular resolution, performed using a hand-held
BRDF capture device, are followed by a standard fixed-view image
capture under a varying area source. Based on microfacet BRDF
theory, a small number of measured NDFs then serve to infer a
spatially varying BRDF over the whole surface.

Modeling Microgeometry. Zhao et al. [2011] used X-ray com-
puted tomography (CT) to measure the volumetric micro-structure
of cloth, which was combined with estimated appearance parame-
ters from photographs to generate highly realistic images. In con-
trast, our focus is on surfaces and surface microgeometry, which
can be captured much more efficiently, and at higher resolution,
with profilometry than by CT. Yan et al. [2014] demonstrated a
method to compute the scattering directly from a detailed microge-
ometry using geometric optics, however they did not use measured
microgeometry or validate against BRDF measurements.

McKnight et al. [2001] used optical profilometers to measure
isotropic dielectric surfaces and compared the results to geomet-
ric optics and Kirchhoff-based predictions for in-plane BRDF mea-
surements. They found both methods matched to the data well, but
unlike our results, they found no need to filter the geometric results,
likely due to the lower resolution of their geometric data. Sung et al.
[2002] used confocal microscopy to measure the microgeometry of
embedded flakes in an isotropic metallic paint and compare it to in-
plane measured BRDF values under a geometric optics assumption.
They use a local least squares plane fitting to compute surface nor-
mals that is similar to our filtering, however the paper states this is
being used for data interpolation purposes while we explicitly use
it to account for wavelength scale effects missing from geomet-
ric optics. Unlike these prior methods, we consider more general
anisotropic surfaces, including ones with higher roughness, vali-
date against both in and out of plane measurements, and provide
essential tools for graphics applications such as practical BRDF
models and consideration of spatial variation.

3. METHOD OVERVIEW

Our goal in this work is to reproduce the complex appearance
of metal surfaces by measuring their surface microscale geome-
try (with sub-wavelength resolution). An example is shown in Fig-
ure 1, where we scan a brushed stainless steel sample to obtain its
surface microgeometry from which we are able to predict its highly
anisotropic average BRDF as well as visually important aspects of
its characteristic spatial texture.

Compared to more conventional direct BRDF measurement, our
indirect microgeometry approach has several advantages, espe-
cially for anisotropic surfaces. Our approach provides extremely
high angular and spatial resolution in the BRDF, much higher than
is typically feasible with direct approaches. It requires only off-the-
shelf equipment (optical profilometers are available from multiple
manufacturers and used in photolithography and nanofabrication
industries). And it provides insight into the underlying physical
causes of a material’s appearance.

There are also some potential disadvantages to our microgeom-
etry approach. Scanning time is proportional to spatial extent, so
is not well suited to capturing low-frequency spatial features. Our
test surfaces contain considerable variation at small scales but are
homogeneous at large scales. Our method currently only attempts
to model first-surface reflections, so it only applies to materials,
such as metals, where this is the dominant effect. Also as an in-
direct method, it requires validation especially since real surfaces
generally do not satisfy all the assumptions of the surface scatter-
ing theories used. A major contribution of this paper is to explore
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Fig. 2. A photograph of the optical profilometer used for this paper (im-
age courtesy of Zyg0®) and an illustration of of how it measures surface
heights.

the feasibility of this approach and validate the BRDF results for a
small set of challenging, extremely anisotropic metal samples.

The rest of the paper is organized as follows. We begin by dis-
cussing optical profilometers and how we use them to scan surface
microgeometry in Section 4. Then we discuss two different theo-
ries for predicting BRDFs from surface geometry. Section 5 de-
scribes microfacet theory, which is based on geometric optics and
is widely used in graphics, as well as the spatial filtering modifi-
cation we found necessary when applying it to our data. Section 6
reviews scalar Kirchhoff theory, a popular wave optics approxima-
tion for predicting scattering from rough surfaces. Both theories
include approximations and local smoothness assumptions that our
surfaces do not fully obey, so it is important to test their accuracy.
In Section 7, we measure five metal surfaces, one isotropic and
four brushed, and compare profilometer-based predictions against
data from our gonioreflectometer, a specialized device that directly
measures BRDF values. Despite their considerable differences, we
find that both theories make similar predictions and show gener-
ally good agreement with the gonioreflectometer data for our test
surfaces.

Both microfacet and Kirchhoff theory predict that the primary
determinant of a BRDF’s shape is the surface’s normal distribution
function (NDF) or a function of a similar form that we can call
its effective NDF. Since in general BRDFs are 4D functions while
NDFs are only 2D, this is a significant simplification and much eas-
ier to measure, store, and visualize. For generality, we represent our
NDFs as 1025x1025 tabulated data, which can represent even ex-
tremely anisotropic and narrow NDFs such as found in some of our
samples. However the tabulated NDF form can be data-intensive
and inconvenient for rendering, especially if we want to represent
spatially varying BRDFs. In Section 8 we introduce a new 5 pa-
rameter extension of the popular GGX distribution that captures
the most significant NDF features in our data. This new distribu-
tion is called the ellipsoid NDF, and supports both anisotropy and
skew (or shifting of the maximum of the distribution away from the
center). While not present in the large-scale NDFs, skew is a fea-
ture that we see in our fine-scale NDF data and believe is important
in modeling their spatial variation.

Finally we explore a simple proof-of-concept method for model-
ing the characteristic textures of brushed metals in Section 9 by ex-
trapolating from a relatively small set of measurements. Computing
NDFs for many smaller regions provides information about how the
BRDF varies spatially. We capture this data for two short, narrow
stripes aligned with the surface’s principal directions, fit the data
to the ellipsoid NDF, and then use a simple Fourier technique to
synthesize much larger textures with similar statistics. Our results
show that even this simple approach produces significantly more
realistic images than just using the average or large-scale NDF.

Aluminum #4 "~

[e—— 700 um

Stainless steel #4 .

70 um 1

Fig. 3. Profilometer measured surface microgeometry for aluminum #4
and stainless steel #4 samples. The blue regions correspond to a single pro-
filometer scan and contain measured heights for 640x480 surface points at
110nm horizontal resolution. Larger areas (orange) are measured by com-
bining multiple scans. Grayscale intensity corresponds to surface height,
and yellow indicates points where the profilometer could not determine a
height.

4. OPTICAL PROFILOMETER

Optical profilometers are commonly used in nanofabrication and
related areas to obtain accurate surface measurements. The model
we use is a Zygo® NewView™ 7300. This device, illustrated in
Figure 2, combines microscope optics with a white light interfer-
ometer. Light is split into two beams, with one reflecting off the
surface and the other from a reference mirror, and then recombined
causing interference effects dependent on the relative lengths of
the two paths. A camera observes the surface while the interferom-
eter is scanned vertically allowing it determine the surface height at
each pixel with sub-nanometer vertical resolution. Horizontal res-
olution depends on the camera and microscope optics used. In our
case, we use a 640x480 camera set for 110nm horizontal resolu-
tion to scan a 70x53pum region of the surface, and each scan took
approximately 7 seconds. A horizontal translation stage moves the
sample between scans for rapidly capturing larger regions. Detailed
info about this device can be found online [Zygo® 2011].

4.1 Profilometer Surface Measurement

To test our approach, we selected a set of five metal samples:
QPanel, stainless steel #4, stainless steel #3, aluminum #4, and cop-
per #4. The QPanel is a steel plate with an isotropic rough finish,
while the other four are commercially available brushed metal sur-
faces. The number refers to the brushing type, with lower numbers
corresponding to coarser brushing. Surface roughness also depends
strongly on material properties; aluminum #4 is much rougher than
stainless steel #4.

For each sample, we measure its surface microgeometry using
the profilometer. Each scan generates a 640x480 grid of height
measurements covering a 70x53um region of the surface, and we
perform multiple contiguous scans. For example, a set of 10x10
scans generates roughly 30 million height values covering an area
of 0.37mm? in about 12 minutes. The 110nm horizontal resolu-
tion allows us to measure surface detail down to and slightly be-
low the wavelength range of visible light. There is a roughly 2pm
misalignment between the boundaries of neighboring scans due to
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v Direction from which light is incident

w Direction in which light is scattered

h Half-direction for reflection, h = (¢ + w)/ ||¥ + w||
n Large-scale, or average, surface normal

m Microsurface, or local, surface normal

Dy Microfacet Normal Distribution Function (NDF)
Dk Kirchhoff distribution (analogous to NDF, eq. 6)

G Shadowing-masking function

F Fresnel term

fr Bidirectional reflectance distribution function (BRDF)
A Wavelength of light

Aq Effective Kirchhoff wavelength (eq. 5)

Xs Xi(x) = 1if x > 0and is zero otherwise

Fig. 4. List of important symbols.

limitations of the mechanical translation table, but we process each
scan individually and are not sensitive to this error.

Sample profilometer measurements for two of our samples are
shown in Figure 3. The data reveals the surfaces in great detail, but
also contains some artifacts. In some cases, the profilometer does
not return an height for a given point (shown as yellow points).
This can happen in locations with very steep slopes or too much
local surface complexity, creating ambiguous fringing patterns in
the interferometer. Such points are treated as missing data in subse-
quent processing and constitute less than 5% of the measured area
in each of our datasets. More rarely, the profilometer sometimes re-
turns height values that are inconsistent with their neighbors, which
we refer to as outliers. These are likely points that should have
been marked as missing data but did not quite meet the interfer-
ometer’s ambiguity threshold. We experimented with a variety of
filters to remove these artifacts, such as hole-filling and outlier-
rejection. However we noted these filters had very little effect on
either our microfacet or Kirchhoff-based BRDF predictions, and
we ultimately discarded the filters as unnecessary for our purposes.

Next we discuss two theoretical approaches for predicting
BRDFs from our measured surface data: microfacet and Kirchhoff.
These theories only consider first-surface reflection, which we be-
lieve is the dominant mode in our test samples. They do not attempt
to model multiple or sub-surface scattering, which can be very im-
portant in other types of materials.

5. MICROFACET THEORY

Microfacet theory treats a surface as a curved mirror, or equiva-
lently as a set of tiny flat mirror facets, that obey geometric op-
tics. At each point, the surface reflects incident light into the corre-
sponding mirror reflection direction according to the local surface
normal. Therefore light coming from direction ¢ will be reflected
into a given direction w only by those parts of the surface where
local surface normal is equal to the half direction h, defined as:
h = (Y + w)/ |l¥ + w]|. The area density with a given local normal
is described by the surface’s normal distribution function (NDF).
The BRDF corresponding to a microfacet model is given by:

_ Dy(h) F(y-h) G, w)
frtw ) = = M

where Dy is the surface’s normal distribution function, F is a Fres-
nel term, G is a shadowing-masking term, and n is the large-scale
or average normal of the surface. See Walter et al. [2007] for a de-
tailed derivation of this equation. The Fresnel term depends on the
material type and can be computed based on its refractive index and

Naive Filtered Al#4 Gonio

05 0 05 = 05 o 05 5 05 o 05 1

Fig.5. Comparison of naive and filtered geometric NDF estimation for our
Al#4 sample. The NDF on the left is computed using the simple geometric
NDF definition, while the one in the middle is computed using our gaussian
weighting filter. Using the filtered NDFs results in a much better match to
NDF data inferred from our gonioreflectometer BRDF measurements on
the right. Color intensity corresponds the NDF value for the corresponding
normal direction, after projection from the hemisphere to the unit disk.

extinction coefficients. The shadowing-masking term is needed for
energy conservation but its value is typically close to one except
for near-grazing angles. The most interesting and important term in
determining the BRDF shape is the normal distribution function.

Microfacet theory neglects wave effects, such as diffraction, and
may not be accurate for surfaces with roughness at scales near the
wavelength of light. All our test surfaces have roughness at all the
scales we could measure, including down to and below the wave-
lengths of visible light. Most prior microfacet work has estimated
effective NDFs by fitting to BRDF data, without actually measuring
the real surface geometry or examining its relationship to the fitted
NDF. However our goal is to predict the BRDF from the measured
surface geometry, and we find that naively computing the NDF ac-
cording to its geometric definition does not work well in our case.
From wave optics it is well known that surface detail below wave-
length scale has much less effect on the reflection pattern, but we
did not find any consensus on how best to account for this effect
in a geometric optics context. Thus with some experimentation, we
developed a filtered geometric NDF estimation method, described
below, that uses a smoothing kernel to more accurately predict the
BRDFs for our test samples.

5.1 Filtered Geometric NDF Estimation

A surface’s normal distribution function (NDF) is a density func-
tion over the sphere of directions that is proportional to the surface
area with a given surface normal m. The NDF can be defined geo-
metrically as:

Dy(m) = lim M

@)
[Qm|—0 |1Qm| Ag

where Qn, is a small solid angle containing the direction m, A(Qp)
is the area of the subset of the surface with normals inside Qp,, and
Ay is the total projected surface area in the direction of the average
surface normal n. Histograms provide a convenient way to numer-
ically estimate NDFs. Instead of taking the limit, we discretize the
sphere of directions into bins and evaluate Equation 2 for the fi-
nite Qp corresponding to each bin. For heightfield surfaces such
as ours, the NDF is restricted to the hemisphere around the aver-
age surface normal. To represent our tabulated NDFs, we project
this hemisphere onto the unit disk, and then embed it into a square
which is discretized into a 1025x1025 regular grid.

The straightforward way to compute the NDF would be to tri-
angulate the height data and evaluate the histogram using each tri-
angle’s area and normal. However, this naive approach estimates
broad NDFs, such as the one shown on the left side of Figure 5,
which predict BRDFs that are much wider than the actual BRDFs
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as measured by our gonioreflectometer. The naive approach ignores
wavelength whereas we know from wave optics that surface detail
below wavelength-scale has much reduced influence on the BRDF.

Instead we developed a modified NDF estimation method that
uses a Gaussian filter to reduce the influence of small scale features.
At each surface data point, we fit a plane to the local height data that
minimizes the squared vertical distances to the plane, weighted by
a 2D Gaussian kernel based on horizontal distance from the point.
This process is also known as locally-weighted linear least squares
fitting. The normal to the fitted plane is taken as the effective lo-
cal surface normal at that point, and by accumulating a histogram
over many surface points, we estimate the effective NDF for the
surface. The Gaussian kernel tends to filter out small scale rough-
ness, resulting in narrower NDFs that much more closely match our
measured BRDF data as shown in Figure 5.

We experimented with different Gaussian kernel sizes and found
that a Gaussian with a standard deviation of one micron (o = 1um)
works well, so we have used this fixed kernel size for all our results.
However, we observe that the results are not very sensitive to small
changes in this parameter. One micron corresponds to roughly two
wavelengths for green light, which fits well with the intuition of
filtering out surface details that are wavelength scale and smaller.

6. KIRCHHOFF THEORY

Scalar Kirchhoff theory is a scattering approximation based on
wave optics which is often used to predict diffraction effects. Con-
ceptually, the incident light induces secondary sources on the sur-
face, based on the Fresnel equations for a locally flat surface.
These generate secondary waves that radiate outward and combine
to form the scattered distribution. The contributions of these sec-
ondary sources are summed using complex numbers to account for
phase and interference.

Using scalar Kirchhoff theory, one can derive the following
equation for the BRDF:

N 2
[ RG.0.0) (@mis) e (9°5) as |

fr(,w) = 3

167r2A§ [ -n||w-n|

where the integral is over the surface S, § are points on the sur-
face, m(S) are the local surface normals, R is the local Fresnel
reflectance coefficient, and Ay is the total projected area of the sur-
face in the direction of the average surface normal n. A derivation
of this equation is included in the supplemental material and, other
than notation, is similar to derivations in standard texts [Beckmann
and Spizzichino 1968; Ogilvy 1991; Stam 1999]. We define the
vector q as:

L 2n(Y+w) 4r

h 4
q 7 1 “

where A is the wavelength of the light. The length of q depends
on both the wavelength A and the angle 64 between the incident
direction ¢ and exitant direction w. The vector q is closely related
to, and collinear with, the half direction h from microfacet theory.
To make this clearer, we define an effective wavelength A4 as:

A A

T Ly rel cos (%)

Aq ®

Let us assume that the Fresnel coefficient R is independent of
surface position, which is a common simplifying assumption used

in Kirchhoff scattering. Then we define the following function:
2

Dk (d) = fs G me)e @S as| ()

1
472 Ag
which we call the Kirchhoff distribution, and rewrite equation 3 as:

_ Dx(@) IR, w)?
Sil,w) = Ay onwn

Now the microfacet and Kirchhoff BRDFs (equations 1 and 7) have
a remarkably similar form. The Kirchhoff distribution D is anal-
ogous to the microfacet NDF D). The same Fresnel equations are
typically used for both R% and F, making them interchangeable.
Kirchhoff has no term matching G because in order to make the
problem tractable, Kirchhoff derivations usually neglect non-local
effects including shadowing-masking. However this causes Kirch-
hoff models to violate energy conservation for near-grazing angles,
and the same shadowing-masking approximation terms used in mi-
crofacet theory are sometimes added as a practical enhancement.
After adding such a term and some rewriting, we finally get the
following Kirchhoff-based BRDF model which we will use in our
results.

N

Dy (4mh/Aq) F(-h) G(¢, w)

8
41y 0l o] ®

fr,w) =

One significant difference is that Dg (q) is a 3D function while
Dy(h) is a 2D function because h is required to be a unit vec-
tor. However, for sufficiently rough surfaces, Dy is often only very
weakly dependent on the length of @ and our tests indicate this is
true for our surfaces. In such cases, we can approximate q as a
fixed length vector (e.g., by treating Aq as a constant), thus effec-
tively reducing Dk to a 2D function. Then we can view the Kirch-
hoff distribution Dk as being an alternate way to compute effective
NDFs for a microfacet-like BRDFE.

In our implementation, we evaluate Equation 6 using a Monte
Carlo solver for a dense set of values and then store the results using
the same discrete 1025x1025 format as for the geometric NDFs.
This is significantly more expensive than the geometric NDF esti-
mation, but only needs to be done once per measured surface patch.
More details about this process are given in Appendix A

Despite their very different definitions, we find that Dk and our
filtered Dy estimation generate fairly similar predictions for our
test surfaces. The strong similarity between the Kirchhoff and mi-
crofacet models may help explain why microfacet models have
been so successful despite their assumptions being frequently vio-
lated. Prior works have derived microfacet BRDFs as approximate
solutions to the Kirchhoft integrals for particular statistical rough-
ness models [Beckmann and Spizzichino 1968; Stam 1999], but we
have not seen the relationship expressed in the more general form
of equation 6 before.

7. GONIOREFLECTOMETER AND NDF
VALIDATION

Thus far we have discussed how we can measure the microgeome-
try of a surface using an optical profilometer and how we can apply
either microfacet or Kirchhoff theory to predict its BRDF from this
measured data, at least for surfaces where first surface reflection is
the dominant scattering effect. Next we need to test the accuracy
of these predictions, especially since our test surfaces do not fully
satisfy the assumptions of either theory.

One important theoretical assumption is that the surfaces are suf-
ficiently smooth. The literature gives various “rules of thumb” for
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Fig. 6. Left: Average fraction of the surface visible as a function of polar
viewing angle for our smoothest (stainless #4) and roughest (aluminum #4)
surfaces. Visibility is estimated by tracing rays against our measured surface
data. Our gonioreflectometer measurements are concentrated at small an-
gles (e.g., < 40°) where the visibility is close to one and G can be neglected
without introducing much error. Right: Example spectral reflectance data
from gonioreflectometer measurements of our stainless steel #4 surface for
a variety of angles. The spectra are all fairly simple and similar which sup-
ports our finding that the NDFs for our surfaces do not show significant
variation with wavelength.

Sample

Projected hemisphere

Fig. 7. Illustration of gonioreflectometer measurement setup and NDF
projection onto unit disk for visualization. The red rectangle represents the
measured angle coverage over the projected hemisphere (green circle).

when these theories can be safely applied, which can be roughly
summarized as: at wavelength scales the surface should either have
low curvature for Kirchhoff, or be essentially planar for microfacet.
Kirchhoff-based predictions are often assumed to be more accurate
because of its weaker assumptions and ability to predict a wider
range of phenomena (e.g., diffraction gratings). However since our
test surfaces violate the smoothness assumptions of both theories, it
is not immediately obvious if either theory will be accurate, much
less which will perform better.

To test the theoretical BRDF predictions, we also measure our
test surfaces using a gonioreflectometer, which is a specialized in-
strument for directly measuring BRDF values. Our gonioreflec-
tometer [Li et al. 2005] consists of a collimated light source, a
spectrometer detector, and a sample holder. The motor-controlled
mechanical design moves the components with high angular reso-
lution to measure the scattered light over a wide range of incident
and reflected directions. One limitation of our device is that it only
has 3 motors so it cannot reach every possible configuration the 4D
BRDF space. It also does not measure spatial variation but instead
the average reflection from a roughly 4mm diameter region on the
sample, where the actual area varies with viewing angle. Its high
angular resolution and radiometric accuracy make it an excellent
tool for validating our predicted BRDFs. For these measurements,
the light source and detector are kept fixed while rotating the sam-
ple, which allows us measure NDF details down to a resolution of

roughly 1.5 degrees, limited primarily by the aperture sizes of the
source and detector.

Based on the theoretical importance of NDFs, we select a set of
measurements that span a wide range of half directions, h. Since
4D BRDF space is hard to visualize, we also project these mea-
surements into the 2D NDF space by inverting the Equation 1 to
get measurements of the effective NDF:

41¢-n||w-n| fi(y,w)

D(h) ~ F b

&)

where f; (¢, w) is a gonioreflectometer measurement and we as-
sume the shadowing-masking term can be neglected (i.e. G ~ 1),
which is generally true for non-grazing angles (see Figure 6 left).
We estimate the Fresnel term F using published refractive index
and extinction coefficients for the metal type (i.e. steel, aluminum,
or copper). For these tests, we fix the angle between the incident,
¥, and reflected, w, directions (6q = 14.14°) while varying the half
direction, h, as illustrated in Figure 7. For each sample, we mea-
sure around 4000 half directions arranged in a customized pattern
designed to cover the most interesting parts of the NDFs, which
takes roughly 3 hours on our gonioreflectometer.

Besides the potential inaccuracies of microfacet and Kirchhoff
theory (e.g., both assume smoothness and neglect multiple scatter-
ing), there are several other issues to keep in mind when compar-
ing data from these two instruments. We currently cannot match
the exact measurement region, either in location or size, between
the profilometer and gonioreflectometer. Instead we try to mea-
sure large enough regions to provide a reasonable approximation
to the average BRDF for each test sample. The profilometer mea-
surements cover smaller areas and thus exhibit greater variability.
There are also small angular misalignments between the two in-
strument’s coordinate systems. The Fresnel term neglects surface
imperfections (e.g., oxidation) and relies on generic metallurgical
data, which causes some uncertainty in the absolute magnitudes of
the results. The gonioreflectometer’s source and detector apertures
limit its ability to resolve fine NDF features below about 1.5 de-
grees. This limit (sometimes called the instrument signature) was
determined empirically by measuring the NDF of a first-surface
mirror with the gonioreflectometer. In these comparisons, our pro-
filometer predictions have already been convolved by the measured
gonioreflectometer instrument signature to account for its resolu-
tion limits.

Our gonioreflectometer measures spectral data at 10nm resolu-
tion over the visible range; however, in our measurement data the
NDFs for our samples are mostly independent of the wavelength
over this range (Figure 6 right). Thus to simplify the presentation,
we only show data for a wavelength A of 550nm in these compar-
isons. For the Kirchhoff results we have set 4q = 555nm to match
the 64 configuration used in the gonioreflectometer measurements.

7.1 Large-scale NDF Results

Next we test the predictions for our five test surfaces by com-
paring the effective NDF inferred from our gonioreflectometer
measurements to the profilometer-derived NDFs predicted by the
(microfacet-based) filtered geometric and Kirchhoff approaches.
Our QPanel surface has an isotropic appearance. We measured
a set of 20x20 scans on the profilometer, and Figure 8 shows the
measured effective NDF from our gonioreflectometer data and the
predicted NDFs from our profilometer data using our geometric
and Kirchhoff methods. As the plots show, both methods predict a
NDF that is nearly isotropic and in close agreement with the go-
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Fig. 8. Comparison of measured and predicted NDF estimates for isotropic QPanel sample. (Left) NDF inferred from gonioreflectometer measurements,
(middle) NDF predicted by our geometric filtered normal method, and (right) predicted by Kirchhoff integral. For this sample the predicted NDFs are quite

close to each other and to the gonioreflectometer data.

nioreflectometer data. In this case, the geometric NDF is the better
match while the Kirchhoff NDF is slightly wider.

The four brushed metal samples are highly anisotropic, and for
these we used sets of 4x100 profilometer scans, with the long
axis aligned perpendicular to the brushing direction to better es-
timate the average surface NDF. Figure 9 compares results from
our geometric filtered normal estimation method and Kirchhoff-
based predictions to the gonioreflectometer-derived NDFs. Overall
the geometric and Kirchhoff approaches produce very similar pre-
dictions and both generally match the highly anisotropic shapes of
the gonioreflectometer well. In general the geometric method does
a slightly better at matching the NDF lobes in the wide (or cross-
scratch) direction, particularly for aluminum#4, while in the Kirch-
hoff is slightly better at matching the narrow (or along-scratch)
widths. However this data does not present a clear case for prefer-
ring the geometric or Kirchhoff methods and both seem sufficiently
accurate for computer rendering applications. For the remainder of
this paper we will use the geometric method, mainly because it are
easier to compute.

Rendered images generated from our profilometer-based tabu-
lated NDFs for each of our samples are shown in Figure 10. For
each material, we render sections of two cylinders with the BRDF,
or brushing direction, rotated 90 degrees on the left cylinder, and lit
by the St. Peters HDR environment map. For the isotropic QPanel,
both cylinders look similar, but for the brushed metals, the brush-
ing direction has an enormous effect on the appearance. Such nar-
row and highly anisotropic NDFs are quite difficult to measure
with conventional techniques. The BRDFs in these images are spa-
tially homogenous and the texture-like patterns come from high
frequency variations in the estimated NDFs, which would could
likely be reduced by measuring larger areas with the profilometer.

8. ELLIPSOID NORMAL DISTRIBUTION
FUNCTION

In this section, we introduce a new parametric NDF model with the
goal of compactly representing the anisotropy of our NDF data as
well as the asymmetric skew which occurs in tabulated NDFs for
smaller surface regions such as in the examples in Figure 11. While
not generally present in the average NDFs, we believe skew is im-
portant for modeling spatial variation and will be essential in the
next section. None of the prior parametric models allow all these
kinds of asymmetric features. The ellipsoid NDF model is con-

trolled by five parameters with intuitive meanings and is efficient
for rendering while still providing a good fit to our measured data.

The GGX NDF is a single parameter NDF model proposed [Wal-
ter et al. 2007] to fit some measured data, from ground glass, bet-
ter than the then standard Beckmann NDF [Cook and Torrance
1982]. It has since become widely used along with a two-parameter,
anisotropic extension called GTR2aniso [Burley 2012]. GGX is
mathematically identical to an earlier NDF model, Trowbridge-
Reitz [1975]. The Trowbridge-Reitz NDF was derived from the
normal distribution of a spheroid, which is a particular type of el-
lipsoid with two axes of equal length.

The ellipsoid NDF corresponds to the normal distribution of an
arbitrary ellipsoid. It generalizes the GGX/Trowbridge-Reitz NDF
to more degrees of freedom while also providing a geometric inter-
pretation that is useful for computing related quantities. The ellip-
soid NDF is defined as:

D(m) X (m-n)

~ xlAllAn| [JATm|4

where m is a microsurface normal, n is the large-scale, or aver-
age, normal of the surface, and A is a 3x3 matrix with determinant
|A| and inverse transpose denoted as AT, The normals are repre-
sented as unit length column vectors (i.e. ||m|| = ||n|| = 1). Surface
NDF models are typically restricted to be zero outside of a hemi-
sphere centered on the average surface normal n, which is equiv-
alent to using only half of the ellipsoid. The numerator formalizes
this restriction using the indicator function for positive numbers
(i.e. X+(x) =1if x > 0 and is zero otherwise). Equation 10 cor-
responds to the normal distribution of an ellipsoid defined as the
points p that satisfy ﬁTATA p= Ce2 for some constant Ce.

The matrix A controls the distribution shape. An ellipsoid has six
degrees of freedom (three axis lengths and three for orientation),
but the NDF normalization constraint (i.e. f D(m) | m-n| dm = 1)
reduces this to five. It is convenient to specify A as the product of a
rotation matrix R and a scaling matrix S as:

(10)

ay 0 O
A=SR where S=|0 ay 0| and RR=1 (11)
0 0 1

The scaling matrix provides two degrees of freedom in addition
to three for the rotation, to span the space of all possible ellipsoid
distributions. Let us assume we are working in a coordinate system
where the surface normal n is aligned with the z-axis. If the rotation
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Fig. 9. Comparison of measured and predicted NDF estimates for brushed metal samples. For each sample, the 1st row shows the NDF inferred from
gonioreflectometer measurements. The 2nd row includes the 2D zoom-in plots of the NDF from the gonioreflectometer (left) along with those predicted by our
filtered normal method (middle), and by Kirchhoff integral (right). We further show the 1D NDF plots of two 1D perpendicular slices through the 2D NDFs:

cross brush direction (3rd row) and along brush direction (4th row).

matrix is the identity (i.e. R = I or no rotation), then the ellipsoid
distribution reduces to be exactly the same as the anisotropic dis-
tribution GTR2aniso in [Burley 2012][Eq. 13]. And if we further
set @y = ay = a, then the distribution becomes identical to the
GGX/Trowbridge-Reitz distribution. As in those previous models,
the @ parameters control the width of the distribution in two orthog-
onal directions and correspond to notions of surface roughness.

One convenient way to specify the rotation matrix is as the prod-
uct of three axis-aligned rotations:

R = Rx(6x) Ry(6y) Re(62) (12)

This parameterization provides nicely intuitive controls when 6
and 6y are small, which is true for our data. The 6 parameters in
this space each have a simple meaning. 6, rotates the major axis

of the BRDF (e.g., rotates the brushing direction for brushed met-
als), while 6y and 6y rotate the peak of the distribution away the
direction of the average surface normal. This shifting of the NDF
peak away from n is something that we observe when we estimate
NDFs for small areas and is important to be able to represent to
capture the spatial variation over our samples. This ability to skew
the distribution is not supported by any of the prior parametric NDF
models, such as GGX and Beckmann, and is why we developed the
ellipsoid NDF.

We recommend the following energy-conserving shadowing
masking term for use with the ellipsoid NDF:

G, w) =G1(¥) G1(w) 13)
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Fig. 10. Images rendered using our profilometer-derived geometric NDFs. Each image shows sections of two cylinders, where the BRDF has been rotated
90 degrees on the second cylinder. For the anisotropic samples, the brushing direction is horizontal on the left cylinder and vertical on the right. The cylinders
use spatially uniform BRDFs with any apparent texturing caused by angular variations within the BRDFs. Copper’s color is due to its Fresnel term.
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Fig. 11. Example of the NDF variations for different sub-regions in stain-
less steel #4 sample.

Gy (u) = min |1 2||An” ju-n| (14)
: " [Aul| [An][+ (Aw)- (An)
A supplemental document provides more details including deriva-
tions of the NDF, this shadowing-masking term, and efficient sam-
pling strategies for the ellipsoid NDF.

Figure 12 shows data from fitting the Ellipsoid and Beckmann
distributions to the large area tabulated NDFs for our metal sam-
ples. For the large area NDFs, the ellipsoid 6 parameters are all
approximately zero, making it equivalent to the GTR2aniso dis-
tribution. The ellipsoid NDF generally provides a better fit to our
measured NDFs than the Beckmann distribution, such as in the ex-
ample shown in the figure.

9. SPATIAL VARIATION

So far we have worked primarily with large-area average NDFs,
in order to have a meaningful comparison between the goniore-
flectometer and profilometer results. However, for rendering, the
spatial variation of the BRDF over the metallic surface is important
for the overall appearance of all our samples, especially the brushed
finishes. The profilometer data contains extraordinarily detailed in-
formation about spatial variation over the small areas we measured,
and since the spatial structure is essentially random and stationary
we take the approach of using a Gaussian random field model to
generate spatially varying NDFs that resemble the spatial variation
observed in the measured areas.

Our basic strategy is to fit the ellipsoid NDF model to small-area
NDFs derived from subsets of the profilometer data corresponding
to texels at the desired texture resolution. This produces a 5-vector
of ellipsoid NDF parameters at each texel over two very small
texture images. We assume that the variation in these parameters

(a) S#4 Tabulated NDF

(b) Ellipsoid Fit (c) Beckmann Fit

Sample ‘ Ellipsoid (ax, ay) ‘ Beckmann (ax, ay)
QPanel (0.0823, 0.0967) (0.0893, 0.1028)
Stainless #4 (0.0074, 0.142) (0.008, 0.16)
Stainless #3 (0.0173, 0.39) (0.0181, 0.418)
Aluminum #4 (0.0208, 0.469) (0.0265, 0.497)
Copper #4 (0.0183,0.414) (0.0209, 0.459)

Fig. 12. Comparison of stainless steel #4 large area tabulated NDF with
fits to the Ellipsoid and Beckmann parametric NDFs, and fitted parameters
for all our samples. The Ellipsoid NDF usually provides a better fit to our
measured data than Beckmann as in the Stainless #4 example (top).

comes from a Gaussian random field with a separable Fourier am-
plitude spectrum, calculate a spectrum that fits the data, and then
generate a large area of 5-channel texture from our random field
using the inverse Fourier transform method. The resulting texture
is then used to define a spatially varying BRDF via the microfacet
model and the ellipsoid NDF.

‘We compute our textures from two sets of profilometer images:
one is 1 X 100 (a 53um X 7mm area aligned across the scratches)
and the second is 100 X 1 (a 5.3mm X 70um area aligned with the
scratches). We predict NDFs from the surface data in each block,
producing two samples of the texture we want: 100 x 1 and 1 x 100
5-channel parameter textures sampled at ~400 texels per inch.

Synthesizing the texture from these exemplars is simple. We cal-
culate the 1D Fourier spectrum (retaining only the amplitude) of
each 1D texture and compute their outer product; under the sepa-
rability assumption this gives the 2D Fourier spectrum of a 5.3 X 7
mm? area. Assuming this is a large enough area that the same spec-
trum would be observed anywhere on the surface, we simply up-
sample to the size of the desired texture, randomize the phase, and
use the inverse FFT to obtain the parameter texture. The whole pro-
cess is carried out independently per parameter, corresponding to
an assumption that the 5 parameters vary independently.

To test the feasibility and visual quality of this simple texture
synthesis procedure, in Figure 13 we compare a photograph of our
stainless steel #4 sample to the images rendered with matched light-
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Photograph Geometric NDF

ing. The sample is roughly 10cm square, the camera is directly
above it, and the light source spans roughly 9 degrees at a distance
of 64cm and is rotated 23 degrees from the camera (toward the
left). To avoid problems with camera color demosaicing, we use
grayscale images. The three rendered images shown in the figure
use the average NDF (geometric method) from Section 7.1, the el-
lipsoid fit to the average NDF, and the synthesized texture, respec-
tively. The highly anisotropic nature of the BRDF, creates a bright
stripe highlight on the surface. The geometric average NDF does
a good job of reproducing the general location and shape of this
highlight but obviously lacks the finer scale details visible within
the lit stripe. The rendered stripe is also slightly too wide, likely
because we have somewhat overestimated the narrow width of the
NDF lobe. The ellipsoid fit to the average NDF is nearly identical
to it. Using the synthesized texture adds detail within the highlight
and significantly improves its visual realism. While generally simi-
lar, the texture exhibits a less structured appearance than the photo-
graph and contains some other kinds of artifacts. We suspect this is
because the texture is based on measurements span only ~6mm and
a tiny fraction of the sample’s area which limits its ability to repro-
duce larger structures. This could likely be improved by measuring
larger areas with the profilometer.

10. CONCLUSION

In this paper we have presented an alternative approach for repro-
ducing real world material appearance based on measuring its sur-
face microgeometry and using that data to predict its BRDF. Our
approach leverages the increasing speed and resolution of surface
profilometer tools from the photolithography and nanofabrication
industries, and has many advantages over traditional BRDF cap-
ture strategies. It handles highly anisotropic surfaces and is capa-
ble of rapid BRDF acquisition with both high spatial and angular
resolution, albeit with limited spatial extent. We explored both mi-
crofacet and Kirchhoff-based theoretical approaches to predicting
BRDFs from surface detail, developed a new geometric NDF esti-
mation scheme, and validated the results against gonioreflectome-
ter measurements. Our results demonstrate that both the geometric
and Kirchhoff-based approaches can successfully predict the ap-
pearance of highly anisotropic surfaces such as our brushed metal
examples. We also presented the new ellipsoid NDF model, which
supports both anisotropic and asymmetric features, and have shown
how we can use it to model spatial variation for our sample mate-
rials in a compact format that is convenient for rendering. We be-

Simulated Texture

Ellipsoid Fit
Fig. 13. Comparison of a photograph of our stainless steel #4 samples and three images rendered under matched lighting using profilometer-based predictions
of its BRDF. The geometric NDF image uses the average BRDF estimated in Section 7.1 without any spatial variation. The next image is rendered using the
ellipsoid fit to the average NDF. The last image is rendered using our spatial variation, or texture synthesis method. While not a perfect match to the real
texture, using the synthetic texture significantly improves the visual realism of the renderings.

lieve our method has demonstrated state of the art results for our
test metal samples and opens a new avenue for future BRDF acqui-
sition methods based on microgeometry measurement.

Limitations and Future Work. Our methods only predict
the first surface reflection for the surfaces and thus is currently
only suitable for materials where this is the dominant effect, such
as metal surfaces. Materials with important subsurface scattering,
such as paint, or more complex geometry, such as hair, are beyond
the scope of this paper. Although only knowing the surface is not
sufficient to predict the appearance of such materials, nearly all ma-
terials contain important surfaces. In future we would like to extend
our method to handle surface transmission and multiple scattering
so that it can be used an component in appearance modeling for
a broader class of materials. We are also limited in the total spa-
tial extent of the regions we can measure at such high resolution,
and our approach is not well suited for capturing large scale spa-
tial patterns. Commercial profilometers are continuing to improve
in speed, so in future may be feasible to capture much larger re-
gions to get better spatial statistics. Combining our technique with
camera-based acquisition for larger scales, is also an interesting av-
enue for future work.
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APPENDIX

A. COMPUTING KIRCHHOFF DISTRIBUTION, Dk

In section 6 we described how Kirchhoff theory can be used to de-
rive a BRDF model (equation 8) that is very similar in form to mi-
crofacet BRDF models (equation 1). In this context, the Kirchhoff
distribution Dy (equation 6) can be viewed as an alternate way to
compute an effective NDF. The definition of Dk already includes
a notion of wavelength scale, so there is no need to add a filtering
scale parameter as we did for the geometric-based NDF estimation.
However there are some practical issues related to its computation.

Kirchhoff scattering models the incident light as a coherent plane
wave, but the light from real sources is more complicated. With a
plane wave, the phase of the incident light remains fully correlated
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regardless of distance between receiving points. In general, how-
ever, phase correlation decreases with separation distance, becom-
ing incoherent for sufficiently distant receiver points. The region
size over which the phase remains correlated is called the coher-
ence area. For a simple uniform source the coherence area is ap-
proximately given by: Ac ~ 12/Q;, where Qg is the solid angle
subtended by light source in steradians [Mandel and Wolf 1995].
Scattered light under coherent illumination exhibits interference ef-
fects (both constructive and destructive), which are modeled by the
Kirchhoff integral, that are not seen with incoherent light. Limiting
the surface integral to regions matching the size of the coherence
area is one way to account for this difference (e.g., [Levin et al.
2013]). Unfortunately the actual coherence area depends on details
of the lighting configuration and usually is not known in advance.

Experimentally we observe that the principal effect of limiting
the coherence area is a blurring of the effective NDF. This makes
sense, as the coherence area is closely related to the light source
solid angle which similarly limits our ability to observe fine details
in the BRDF and NDF. In practice, it suffices to choose a coherence
area large enough to preserve the major features in Dg or to en-
compass likely lighting configurations. Our profilometer patch size
(70x53um) is just large enough to avoid broadening our narrowest
NDF (stainless steel #4) and also matches the measured coherence
area for sunlight (~10%12 [Mashaal et al. 2012]). Thus in this paper,
we compute Dk for each profilometer patch individually and then
average its value over all the patches in a dataset.

Equation 6 is a complex, highly oscillatory integral that must be
recomputed for each value of q, We triangulate the profilometer
height data to create a surface, and estimate the integral for each
triangle, and sum over the patch. We tried different triangulations
as well as both analytic and Monte Carlo solvers, and found they
all produced essentially identical results. In our implementation, a
Monte Carlo solver with a simple triangulation is the fastest solver
and is used here. To compute each NDF, we fix 14 and then evaluate

the surface integral for roughly 107 values of h to sufficiently re-
solve the NDF in the region where it is significantly non-zero. The
result is then resampled and stored in the same discrete 1025x1025
format as for the geometric NDFs.
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